

User Manual

Grenton 2

Document version: 1.0.10

Date: 01.12.2022

Table of Contents

Important information

I. System structure

II. Foundation - Grenton Logical Interface

1. Introduction

2. Features

2.1. Built-in features

2.2. User features

3. Methods

4. Events

5. Features and methods addresses

III. Project preparation

1. Electrical system preparation

2. System architecture selection

3. Modules power supply

IV. Components installation

1. Modules installation in the switching action

2. Flush-mounted wire modules installation

3. Z-Wave flush-mounted modules installation

V. Object Manager

1. OM installation

A. Windows

B. macOS

C. Linux

2. OM structure

2.1. Object filtering

2.2. Renaming an object

3. Project files

3.1. Saved projects catalogue

3.2. Project backup

4. Basic elements

4.1. Objects configurator

4.2. Script builder

af://n3
af://n7

4.3. Connections diagram

4.4. Visual Builder

4.5. myGrenton

4.6. Bin

VI. Basic system configuration

1. Connecting OM to CLU

2. IP adressess

3. Creating new project

4. CLU Discovery function

4.1. Adding modules to the project

4.2. Replacing / Reassigning modules during Discovery process

5. CLU status

5.1. Module diodes

5.2. CLU module icon in OM

6. Connecting Z-Wave modules

6.1. Adding Z-Wave modules

6.2. Removal of Z-Wave modules

6.3. No communication with the Z-Wave module - a mechanism for counting communication failures

and blocking device communication in the Z-Wave network

6.4. Z-Wave network configuration tips

6.5. Clearing information about nodes

7. Sending the configuration to the CLU

8. Initial values of features

9. Creating basic connections

10. Performing an update

10.1. The process of updating the interface database

10.2. The process of updating the firmware on the CLU

10.3. The process of updating the firmware of the 2.0 series modules

10.4. CLU / modules status in the firmware update window

10.5 Forcing the module update

11. Diagnostic view

11.1 Configuration of the diagnostic view

12. Other operations on the system

VII. Advanced configuration functions

1. Containers

2. Scripts

2.1. Script creation in the graphic mode

2.2. Script creation in the editor

2.3. Script parameters

2.4. Scripts invocation

2.4. Find / Replace function

2.5. Copying scripts

3. Date and time

VIII. Visual Builder – Smartphone control

1. System control on the level of smartphone

2. Interface structure

3. Application for smartphone – GRENTON HOME MANAGER

4. New interface creation

4.1. Graphic skin selection

4.2. Interface pages creation

4.3. Components

4.4. Panels

4.5. Containers

4.6. Adding components and connecting to the system objects

4.7. Sending interface to mobile device

5. Automatic interface creation - GUI generator

5.1. Creating an interface with available resolution

5.2. Creating an interface with its own resolution

5.3. Changing the orientation of the interface with its own resolution

6. Video intercom configuration

6.1. Connection and configuration of a video intercom

6.2. Creation and configuration of the application interface

6.3. Making a call from the intercom

7. IP cameras image operation

8. Remote access of the mobile application to the system

8.1. System configuration

8.2. Port routing setting on the local network router

8.3. Configuration of the Home Manager mobile application

8.4. Starting remote access

IX. CLU Objects

1. Timers

2. Calendar

3. Schedule

4. PID controller

5. Thermostat

6. Push

7. Presence Sensor

8. Sunrise and Sunset Calendar

9. Event Scheduler

X. Media measurement

1. Virtual media measurement

1.1. Launching media measurement on the Object Manager page

1.2. Using media measurement on the Home Manager application side

2. Real media measurement

2.1. Real media measurement settings in Object Manager

XI. CLU service functions

1. Restoring factory settings CLU - Hard Reset

2. System diagnostics - Save the diagnostic package

XII. SMART PANEL

1. Smart Panel equipment

2. Connection of the Smart Panel to the CLU

3. Information to help you create a configuration

4. Configuration of the Smart Panel module in the version v3

4.1. Configuration parameters

4.2 Creating button and display configurations

4.3 Creating a gesture sensor configuration

4.4 Configuration of the proximity sensor

4.5 Creating a multi-panel configuration of the touch panel

5. Configuration of the Smart Panel v4

5.1. Configuration parameters

5.2. Creating a gesture sensor configuration

5.3. Configuration of the proximity sensor

5.4. Panel object - new functionality

5.5. Panel object - page management mechanism

5.6. Backward compatibility

5.7. Creating a configuration using the Buttons page object

5.8. Creating a configuration using the FreeDraw site object

5.9. Creating a configuration using the Thermostats page object

5.10. Connecting objects to larger buttons

6. Configuration of the Smart Panel v6

6.1. Configuration parameters

6.2. New functionality

6.3. Changing the UI and the mechanism of operation of Thermostats pages

XIII. GATE ALARM Module

1. General information

2. Module configuration

3. Integration with the Satel alarm control panel

3.1. General information

3.2. Configuration for the Satel system

3.3. Virtual Objects

4. Integration with the Jablotron control panel

4.1. General information

4.2. Configuration for the Jablotron system

4.3. Virtual objects

5. Virtual object - Timer

6. Restoring factory settings - Hard Reset

7. Configuration parameters

XIV. GATE MODBUS module

1. General information

2. Module configuration

2.1. Time setting via NTP server

2.2. Modbus virtual object configuration

2.3. ModbusValue virtual object configuration

3. Parameters of registers

3.1. Virtual object Modbus

3.2. Virtual object ModbusValue

4. Restoring factory settings - Hard Reset

5. Configuration parameters

XV. GATE HTTP Module

1. General information

2. Module configuration

2.1. Virtual objects

2.1.1. HTTP Request

2.1.2. Downloading certain values from the received response (XML, JSON)

2.2.1. HttpListener

2.2.2. Preparation of the response sent to the server

2.2.3. Reading key values from the querystringparams parameter

2.3.1. Timer

3. The ability to connect to the Gate using TELNET

4. Comprehensive integration with external systems using the GATE Http device

4.1. System

4.2. Output control

4.3. Status download

4.4. Event order

4.5. Event synchronization

4.6. Feedback confirmation

4.7. Timeout

4.8. A lot of objects

4.9. Status for the complex system

4.10. Push Notifications

5. Restoring factory settings - Hard Reset

6. Configuration parameters

XVI. DALI Controller Module

1. General information

2. Module configuration

3. Objects

XVII. Z-Wave modules

1. Fibaro UBS

1.1. General information

1.2. Objects

2. NEO Coolcam Motion Sensor (PIR)

2.1. General information

2.2. Objects

3. NEO Coolcam Door / Window Sensor

3.1. General information

3.2. Objects

4. INFIBITY Motion Sensor (PIR) [NEO Coolcam]

4.1. General information

4.2. Objects

5. INFIBITY Door/Window Sensor [NEO Coolcam]

5.1. General information

5.2. Objects

6. INFIBITY Water Sensor [NEO Coolcam]

6.1. General information

6.2. Objects

7. Heiman Smart Smoke Sensor

7.1. General information

7.2. Objects

8. INFIBITY Siren Alarm [NEO Coolcam]

8.1. General information

8.2. Objects

9. Danfoss Living Connect

9.1. General information

9.2. Objects

10. POPP Z-Weather

10.1. General information

10.2. Objects

11. FAKRO AMZ Solar

11.1. General information

11.2. Objects

12. FAKRO ARF

12.1. General information

12.2. Objects

13. FAKRO FTP_V

13.1. General information

13.2. Objects

14. Fibaro RGBW

14.1. General information

14.2. Objects

15. Remotec ZXT-120

15.1. General information

15.2. Description of device configuration

15.3. Objects

16. Remotec ZXT-310

16.1. General information

16.2. Device configuration

16.3. Objects

17. Aeotec Nano Switch

17.1. General information

17.2. Objects

18. Aeotec Dual Nano Switch

18.1. General information

18.2. Objects

19. Aeotec Nano Dimmer

19.1. General information

19.2. Objects

20. Aeotec Nano Shutter

20.1. General information

20.2. Objects

21. Aeotec Nano Shutter (V2)

21.1. General information

21.2. Objects

XVIII. MyGrenton mobile application

1. Installation and first launch of the myGrenton application

1.1. Installation

1.2. First start-up, demonstration interface

2. Creating the interface

2.1. Adding a page to the interface

2.2. Deleting a page from the interface

2.3. Copying the interface

3. Widgets

3.1. Header (HEADER)

3.2. Value (VALUE)

3.3. Value v2 (VALUE_V2)

3.4. Value Double (VALUE_DOUBLE)

3.5. On/Off (ON_OFF)

3.6. On/Off Double (ON_OFF_DOUBLE)

3.7. Scene (SCENE)

3.8. Scene Double (SCENE_DOUBLE)

3.9. Dimmer (DIMMER)

3.10. Dimmer v2 (DIMMER_V2)

3.11. LED Lighting (LED)

3.12. Thermostat (THERMOSTAT)

3.13. Roller Shutter (ROLLER_SHUTTER)

3.14. Roller Shutter v2 (ROLLER_SHUTTER_V2)

3.15. Roller Shutter v3 (ROLLER_SHUTTER_V3)

3.16. Camera (CAMERA)

3.17. Text (TEXT)

3.18. Scheduler (SCHEDULER)

3.19. Event Scheduler (EVENT_SCHEDULER)

3.20. Multisensor (MULTISENSOR)

3.21. TV Remote Control (TV_REMOTE_CONTROL)

3.22. Audio Remote Control (AUDIO_REMOTE_CONTROL)

3.22. Contact Sensor (CONTACT_SENSOR)

3.23. Contact Sensor Double (CONTACT_SENSOR_DOUBLE)

3.24. Slider (SLIDER)

3.25. Personalization of the widget

3.26. Widget removal

3.27. Copying widgets

4. Personalization of the interface

4.1. Change the name of the interface

4.2. Change the interface icon

4.3. Change the color of the interface

4.4. Blocking access through the cloud

5. Sending the interface to the device

5.1. Sending myGrenton interface to your phone using a QR code or manually

5.2. Sharing myGrenton interface via the cloud

6. Application and interface settings

6.1. Application settings

6.2. Interface Settings

XIX. Grenton 2.0 Logic Distribution

1. Configuration of the Distributed Logic mode

1.1. Operation of Distributed Logic between DIN and output objects

1.2. Operation of Distributed Logic between BUTTON and output objects

1.3. Operation of Distributed Logic between PANEL_PAGE with PANEL_BUTTON and output objects

2. Default Mode

2.1. Default Mode for input modules and output modules

2.2. Default Mode for modules with their own inputs / outputs

3. Restoring communication between the CLU and the module

Important information

Note! This documentation covers the functionalities and operating principles for Grenton 2.0

series modules. The functional description for the Object Manager as well as the Home Manager is

preserved. The myGrenton application is completely compatible with Grenton 2.0 systems - in the

case of 1.0 systems, access to specific functions may be limited or completely unavailable.

af://n10

I. System structure

GRENTON Smart Building System was designed to operate small, medium, and large objects. System

created on its basis can be easily modified, expanded, and integrated with other systems.

The system consists of: CLU modules, IOM modules, Object Manager, sensors, and applications for

smartphone

CLU (Common Logic Unit) modules. Their function is to process logic and store configurations. CLU

is a basis of every system. CLU modules communicate with each other using system bus, working

on the basis of standard Ethernet 100 Mbps. CLU module ensures also communication with IOM

modules using field bus.

IOM modules fulfil function of inputs/outputs. They are connected to CLU through TFBus field bus

or in a wireless way, using Z-wave standard. IOM modules may include various types of

inputs/outputs, such as relays, switches, light sensors, temperature sensors etc., and their

combinations.

Object Manager – Software that enables configuration of system, logical functions, etc.

Control applications - they allow activation of designed in OM graphic user interfaces, that enable

system functions control using smartphones, tablets, PCs, TV sets, etc.

System configuration is stored as a project file and set using Object Manager (OM) software. Set

configuration is then sent to the CLU modules which store it in their memory. IOM modules do not store

configuration, they are controlled directly from CLU which they are connected to.

In the case of losing project OM file, downloading data from CLU is recommended. However,

downloading data from CLU is assosiated with losses of: graphic view of scripts, containers, mobile

interfaces and objects types (source/load).

af://n14

II. Foundation - Grenton Logical Interface

1. Introduction

GRENTON system works on the basis of event driven model. Household members and their environment

cause generation of events in the system, to which system reactions are connected, e. g. turning on the

lamp in response to pressing a switch.

Objects are a basis of the logical interface. In GRENTON system, each object behaves and is treated as a

physical object, e. g. a ball. Each object has its own features, we can perform certain actions on it, and it

can cause events. In reference to the ball: it is red (so it has its own features), we can kick it (thus

controlling it), and it can knock over a bottle while rolling (thus causing an event).

In the system each input and output has its own compilation of features, methods, and events, which is

called its logical interface.

A solution unique for the GRENTON system is availability of each feature or method in any place of the

system, on each CLU, regardless of where (on which CLU, input, or output) it is placed physically. Thus, it

is possible to invoke methods from output connected to CLU A as a result of event that occurred within

CLU B.

Moreover, every output has events specific for itself, which enables e.g. switching on one light as a

consequence of switching on another. You can find full list of methods and features of each input /

output in the catalogue card of the module.

2. Features

af://n31
af://n32
af://n40

2.1. Built-in features

Built-in features is a group of parameters / information describing specific object (input, output, etc.).

Some of these features can be set during system operation and are used to determine working method

of an object (work mode of a button), while others can only be read, since e.g. they show physical

parameters (temperature feature for thermometer).

2.2. User features

In CLU you can define features that will be used as variables in storing parameters during system

operations, e.g. counters, markers (flags). User features can be used exactly as built-in features, except

all user features can be saved and read.

3. Methods

Methods are commands which can be given to a specific object. Each object has its own characteristic

methods. For relay output, it can be methods SwitchOn and SwitchOff . Additionally, the methods

can include required or optional parameters, which specify details of method invocation e. g. switch-on

time.

4. Events

Events are elements of logical interface, invoked in reaction to the changes occurring in relation to an

object (e.g. pressing a button, temperature change, etc.). We can connect one or more methods to each

event, which will be invoked when an event occurs, e.g. when the button is pressed, the lights will be

switched on. By connecting events of one object (mainly inputs, but sometimes also outputs) with

methods of other object, we create logical configuration of the system.

Each type of object (type of input/output) has its own list of events, which are invoked in a precisely

specified way, depending on the actions performed by the user. For instance, binary input has the

following list of events:

OnChange

OnSwitchOn

OnSwitchOff

OnShortPress

OnLongPress

OnClick

OnHold

which are invoked according to the following scheme:

af://n41
af://n44
af://n47
af://n50

5. Features and methods addresses

Each feature and method has an address in the system, thanks to which they can be invoked in scripts

and during creating connections with events. Address consists of 3 parts, joined by " –> " mark:

CLU or container identification

Object name (input, output, CLU)

Name of feature/method and its parameters (if there are any)

For example: CLU1–>Lamp1–>SwitchOn() – method causing switching on output Lamp1

Lights–>Lamp1–>value() – feature showing whether the lamp is switched on or off, for lamp placed

in the "Lights" container.

af://n73

III. Project preparation

1. Electrical system preparation

Note! Electrical systems in residential and public utility buildings may be established only in

accordance to mandatory provisions and electrical standards and only by authorized, qualified

specialists

A. Electrical system topology

GRENTON System enables creation of both centralized and distributed systems. For newly designed

buildings, we recommend connecting all its circuits to one electrical distribution board, which ensures

more flexibility in systems design and more sustainable resources management. Every device that will

be connected to the system should have its own, separated electrical circuit, ending in the electrical

distribution board. Select wires diameter in accordance to the mandatory standards. If there is no chance

of connecting electrical distribution board and the controlled device directly, there are three possible

solutions:

1. Using CLU module together with IOM modules, CLU modules in the distribution board are

connected to the device module using system bus - recommended solution when there are two or

more buildings integrated into one system.

2. Using one or more IOM modules, the modules are connected using field bus - recommended

solution when there are only a few device modules.

3. Using IOM radio modules based on Z-WAVE - recommended solution when there is no chance of

using wiring installation (pre-existing buildings etc.).

B. Bus

There are 2 buses in the system:

1. System bus, used for connections between CLU-CLU and CLU-SMARTPHONES modules etc.

System bus - Ethernet. Modules can be connected to each other using serial connection. The

maximum length of wire between two CLU modules is 90 m.

UTP wire is recommended (minimum 5e category).

System bus length could be increased by using network devices such as switch, router etc.

2. Field bus, used for connections between CLU-IOM modules.

Field bus – IOM modules can be connected to the field bus using bus (TF-Bus) wire and also

connected to the bus using the BUS MODULE. Modules must be connected to each other using

serial connection. Maximum length of the bus from one end to another is 300 m.

Note! Separate power supply for the bus may be necessary.

Wire with constant surge impedance and minimum cross-section of 0.5 mm² is recommended, e.g. UTP

wire (optionally, covered wire: FTP or E-BUS). With larger number of modules or more extended bus,

potential drops should be considered when choosing diameter of the bus wire.

af://n86
af://n87
af://n90
af://n99

C. Useful tips

Before implementing electrical system project, prepare smart house system project.

If you don't know yet, which devices will be controlled by the system, make sure the wiring reaches

all possible places.

For light switches, any thin wire may be used, e.g. YTDY – it will allow saving on wire.

Remember to prepare the system for temperature sensors and weather station.

Place power outlet on the terrace and connect it to a separate power supply - you will be able to

control the power in the outlet through the system.

2. System architecture selection

Various configurations may be used depending on type, size, and requirements ofobjects - the system is

fully scalable. Depending on scale and needs, there are several available configurations:

A. Basic configuration - centralized system with one CLU

The diagram presents a system built on the basis of one CLU. In a system configured this way the

maximum number of IOM modules equals 48 (or up to 400 objects). Remember to provide the bus with

power adequate to its load.

B. Advanced configuration - tablet-controlled distributed system with many

CLU

System capacity can be increased by adding next CLU modules. CLU units are connected to each other

using system bus. The system may be additionally expanded with smartphones, tablets, etc.

af://n114
af://n127
af://n129
af://n132

C. Integrating several buildings into one system

System expansion is practically unlimited. Several objects can be connected to one system. Thanks to

that, you can have central control using only one system.

af://n135

3. Modules power supply

The CLU and IOM modules can be powered in two ways:

1. By connecting the power supply to the 24V DC system bus - in this case the CLU module will

power the IOM modules connected to it via the local bus. A maximum current of 1000 mA can flow

through the local bus (TFbus).

af://n139

2. By connecting the 24 V DC power supply to the local bus. In this case, the CLU will be powered

from the local bus.

For flush-mounted modules, it is possible to optionally use a 24 V DC flush-mounted power supply.

Note! CLU can be simultaneously connected to the power supply from the system bus and local

bus!

IV. Components installation

Majority of modules is provided in two versions: on the DIN rail to be assembled in the distribution

centre, and flush-mounted. In addition, Z-Wave modules are available: Relay, Roller Shutter and Digital

IN.

1. Modules installation in the switching action

Modules offered by GRENTON are provided in cases adjusted to assembly in the distribution centre on a

DIN rail. To assembly a module, place it on the rail and block the latch on the underside of the module.

Then, connect the modules to the system bus using special bus connectors, and attach connecting wires

according to the assembly manual attached to the modules.

Note! Modules in the OM are identified using a serial number. After installing a module, write

down its serial number and physically connected inputs / outputs, it will facilitate identification of

specific objects.

2. Flush-mounted wire modules installation

Modules designed for flush-mounted installation are adjusted for installation in junction boxes of 70mm

diameter, as well as majority of boxes of 60mm diameter. In the case of boxes of 60mm diameter, check

beforehand if the module fits in the specific type of a junction box.

In the case of planned installation of larger number of modules, use deepened junction boxes.

3. Z-Wave flush-mounted modules installation

Wireless modules are adjusted to assembly in junction boxes of minimum 60mm diameter. It is For flush-

mounted modules it is recommended to use cans with a side pocket.

af://n154
af://n157
af://n162
af://n166

V. Object Manager

1. OM installation

Minimum system requirements for the computer and detailed Object Manager configuration software

installation manual is attached to software installation files.

Current Object Manager version could be downloaded from: https://www.grenton.com/wsparcie/material

y-do-pobrania.html

Note! The folder in which the Object Manager will be installed can not contain special characters

in the name ie. %, !, # etc.

A. Windows

Download the file .exe.

Run the file.

Select the Object Manager installation path.

Start unpacking by pressing Extract.

After unpacking, run the om.exe file located in the /object-manager directory.

B. macOS

Note! The application name contains the version number, which allows multiple OM versions to

exist on one computer. Before removing previous versions, it is recommended to migrate / copy

project files stored in the application file by default. To do this, in the Finder, select (Ctrl-Click)

"Show Package Contents" and copy or move the folder containing the project files

(om.app/Contents/MacOS/projects) to the new version of the OM application.

Download the file.

Run the file.

Copy the Object Manager application to the Application folder as suggested.

Start the Object Manager application in the standard way.

C. Linux

Download file object-manager.tar.gz.

Extract the downloaded file in the selected location.

After unpacking, run the ./om file located in the /object-manager directory.

2. OM structure

Object Manager is operated through three available for the user menu panels:

MAIN MENU

Contains basic commands for handling the project.

ACTIONS MENU

af://n170
af://n171
https://www.grenton.com/wsparcie/materialy-do-pobrania.html
af://n176
af://n188
af://n200
af://n209

Icons in the menu are used for programming and configuration of devices. Only icons that can be used at

the moment are illuminated - it comes from the context which you are present in, e. g. if you selected

CLU in the side tree, icons connected to CLU become active.

OBJECTS MENU

Consists of three parts: Object (CLU, inputs, outputs) list, the myGrenton tab (creating the myGrenton

application interface) and Visual Builder (creating the Home Manager application interface).

All system configuration data is stored in the project file. In OM, any number of projects can be stored,

each of them connected to different installation / building / apartment.

2.1. Object filtering

Note! The Filter objects functionality is available for Object Manager version 1.5.0 or higher.

For each grouping view (by CLU, by module, by type, by containers, only inputs, only outputs) it is

possible to filter the displayed elements using the Filter objects option.

af://n230

After entering the name to be searched, all elements (objects) containing the entered phrase in the

given view are displayed.

The given phrase is included in the filtering after switching to another group view (tab).

2.2. Renaming an object

Note! The possibility of renaming an object using the context menu / F2 is available for Object

Manager version 1.5.0 or higher.

Renaming a given object can be done in the following way:

In the Object properties window, enter a new name in the Name field.

selecting the object and calling the rename option from the context menu or by using the F2

keyboard shortcut.

af://n239

Note! Renaming from the context menu / F2 is not available for Home Manager interface

elements.

3. Project files

3.1. Saved projects catalogue

After Object Manager installation, select a catalogue, in which the saved projects will be stored.

Default destination path for the catalogue: C :\.... \OM\projects

All files of created and saved projects are saved in the catalogue with *.omp extension.

(e.g. projekt.omp).

3.2. Project backup

During work on a project there is an option to make a backup of the project which won't be modified

despite making changes in the project. This way, it is possible to recover earlier version of the project if

the user made unwanted configuration changes. Any number of backups can be made for each project.

Note! It is recommended to make backups as often as possible, especially before making

significant changes of system configuration.

To make a project backup, click File->Make project backup in the main menu (backup can also be

made by keyboard shortcut CTRL+Shift+B).

af://n254
af://n255
af://n260

Saved backups are available in the list opened by clicking Available backups , or in the project

opening window in a tab Backups .

Note! After selecting a backup from the list it will be loaded, and any current changes in the

project that haven't been saved will be lost.

4. Basic elements

4.1. Objects configurator

Each input, output, sensor, or other physical device connected to the system is visualised as an object in

the OM. Objects do not show physical modules, but specific inputs and outputs. Each object has its

initial values, built-in features, and events, displayed in the object configurator. After clicking on an

object, this form opens.

af://n271
af://n272

The form above consists of the following sections:

1. Basic information

This section is located in the upper part of the form and contains basic information on each object, e. g.

name, Id, module type, serial number and input/output number within the module. In this section the

user can also define type of source or receiver, physically connected to the object.

2. Control Tab

Contains methods (with all parameters) relevant for the browsed object. Enables invocation of specific

method from level of OM. For instance, for relay output you can invoke SwitchOn method with Time

parameter (e.g. 30s), which will cause switching the output on for 30s. To invoke method at OM level,

enter parameter values (if they are necessary) of the invoked method in the control tab and click

"invoke" button.

3. Configuration chart

Configurations charts define object behavior and allow simplified logic configuration. To add a

configuration scheme, select the available scheme from the list, and then add a link with the module by

clicking - look up VI.9..

4. Events - tab description

The tab contains list of events applicable for the specific object type and methods connected to them,

which are invoked after event occurrence (if the user defined them). If configuration chart was selected,

the tab is in the read only mode and shows only connections created as a part of the selected chart.

You can go to event-method connections edition any time by clicking "Go do edition". In this case, "user

chart" will be created, which will show up on the list in the configurations charts tab.

After adding command to selected event, objects list opens. Then, after selecting proper object, list of

methods that can be invoked on it appears. Adding a selected method results in creation of new

dependence between objects.

5. Built-in features

This part presents values which the selected objects currently possesses, and initial values which was

saved in it (initial vaues set in the case of system restart, e.g. after power supply break). Entering value

in the "Initial values" field will result in setting it during CLU start.

6. User features (only CLU)

The tab allows user to define in the CLU his own list of features, which then can be used to store

various type of data (counters, markers). Adding user feature happens after clicking the

button and entering feature name. Then, feature's initial value and type (text, numeric, boolean) have to

be defined.

4.2. Script builder

It's a tool for script creation, which can work in two modes:

1. Graphic (simplified) mode, in which the chart can be created in an easy wat by dragging and

connecting elements.

The graphic mode allows to create complicated scripts made of numerous conditions and methods. It is

also possible to use variables and parameters. The only limitation is no possibility of creating loops,

which require using text mode.

2. Text (full) mode, in which the user can create the logic using advanced LUA language. Thanks to

that, creation of very complex charts using all elements of LUA language (including loops, tables,

etc.) is possible

af://n298

In comparison to the standard LUA, the language was expanded with possibility of direct linking to

addresses of methods and features, which are treated same as other functions of LUA.

4.3. Connections diagram

A tool showing dependencies and connections between all objects in the system. Thanks to that tool,

you can easily and quickly find a dependency that interests you, or check dependencies of a specific

module without going through configurations.

Connections diagram may be run from the main menu: Tools -> Connections diagram, or using keyboard

shortcut [ALT+Q].

Each object in the system is presented in the diagram by a circle with its address displayed next to it.

The colour of a circle depends on the object type:

CLU – red colour;

Input / output – cherry colour;

Events of inputs or outputs – light blue colour;

Events generated by timers – dark blue colour;

Built-in methods – dark green colour;

Script methods – light green colour

Built-in features – yellow colour;

Defined features – orange colour;

Connections between objects are displayed as arrows which heads point to the invoked object.

af://n312

Connections are displayed on three different levels:

1. CLU-CLU – displays connections between two CLU, if any of objects of one CLU (input, output) is

connected to another CLU.

2. Connections between objects - displays connections between specific objects (inputs, outputs)

without showing specific events, features, or methods.

3. Connections between events, methods, and features - displays the most detailed view, showing

what specific events cause etc.

Navigation also happens in two planes:

1. In the vertical plane - allows switching between objects on the same level by clicking any object

except central in the chart.

2. In the diagonal plane - allows going up and down between levels by clicking on the central object

and selecting an object from the appearing list (for going down) or by pressing "up" button in the

upper part of the chart (for going up).

4.4. Visual Builder

Visual Builder is a tool used to create user interface for mobile devices. The interface can be created

automatically on the basis of installation project, or can be designed and created by the user acc. to

their personal preferences. The user has an option of using their own graphics. Interface is created

through drag&drop of Visual Builder components. It enables creation of interface for all popular

resolutions. The icon switching on the VB is placed at the end of expanded objects tree.

af://n353

4.5. myGrenton

A tool for creating a user interface for mobile devices for the myGrenton application. Creating the

interface is done by dragging & dropping elements from the object tree available in the project (modules

connected to CLU) - the widget will have a predefined template.

4.6. Bin

It is modelled after solution known from operating systems. Deleted object, script, or application in the

project is not irretrievably removed, but moved to the bin, thus giving the user a possibility of retrieving

deleted data in the case of change in the concept.

The bin has a form of a tab placed in the objects tree, and appears whenever an object is deleted.

Objects from the bin can be restored at any moment by right-click and selecting "restore" from the

context menu.

Objects can be irretrievably removed from the bin by selecting "delete" from the context menu.

Restoring a module removed in this way to the project is only possible by executing CLU Discovery.

The bin is a great solution for storing objects which are not used at the moment but might be useful in

the future.

af://n357
af://n361

VI. Basic system configuration

1. Connecting OM to CLU

To configure devices in the system, the computer has to be connected to the CLU modules. During

operations performance, all CLU modules must be connected to each other using Ethernet cable.

There are two connection methods:

1. Direct connection to the computer Connect network cable to the network card in the computer and

to the network socket in the CLU module.

2. Connection through local network It is possible to connect with GRENTON system using local

network. In order to do that, both CLU module and the computer which will be used for establishing

connection must be in the same sub-network.

2. IP adressess

CLU modules, as all network devices, have their own IP address. Each of the modules installed in the

system must have its own unique IP address, however, all CLU modules in the system must work in the

same sub-network so they can communicate with each other. IP address of a specific CLU can be

changed by the user at any time. The address can be changed through device configurator for the

selected CLU and by entering the new address into the field containing the old address.

Note! After connecting CLU (or several CLU) to computer's network card, it will receive a new IP

address consistent with pool of addresses in which computer's network card is.

3. Creating new project

After opening Object Manager, a new window with two options appears: opening a saved project and

creating a new project.

af://n369
af://n370
af://n379
af://n385

1. Select new project creation, then name the created project.

2. Object Manager software will display network configuration window. The settings for the available

interface are loaded automatically. Other network interfaces can be selected from the list. It is

possible to indicate the range from which the system will automatically assign available IP

addresses to the modules found.

Note! For Object Manager version below 1.2.1, the settings for the available network interface are

not loaded automatically.

Note! In the older version of Object Manager, there is the "Network WiFi configuration" step that

should be skipped.

3. In the next step, you may choose between downloading existing system configuration to the

newly created project, and complete configuration reset and starting a project from scratch. The

first option is useful when necessity of recreating configuration after loss of project file occurs.

4. In the fourth step, available modules search procedure named CLU Discovery should be launched.

5. In the next step, OM starts searching available CLU modules.

To complete the creation of a new project - after searching for available CLU - in the window

displayed, enter the Secret Key of the given CLU, which is located on the module's cover.

6. After entering the key for the found CLU, a window containing all CLUs found during the CLU

Discovery procedure is displayed. For a given CLU module to be added to the project the check box

in the Choice column must be selected.

In this window, it is also possible to change the IP - option is called from the context menu (PPM)

for a given CLU (selected in the line).

Going to the next window (Next button), a list of all selected (in the previous step) CLUs along with

the modules that are connected to it (TF-Bus) / are paired (Z-Wave) is displayed.

The description of the information displayed in the above window can be found in chapter VI.4.

CLU Discovery function.

Note!

For Object Manager version below 1.6.0, the windows referred to in point 6 are not displayed - OM

will list the CLU modules found. In this window you can add all or only selected modules to the

created project. You can also change the IP address that has been assigned automatically.

4. CLU Discovery function

CLU Discovery function completely automatically finds CLU modules and connected to them IOM

modules. It is launched obligatorily during opening a new project, but it can also be launched manually

at any time from the actions menu.

Use CLU Discovery function when:

You connect new CLU or IOM module to the system

You change CLU or IOM module for a different one

You switch IOM module from one CLU to another

There is a need to recover a completely deleted IOM object

After properly conducted CLU Discovery run, all changes will be found and added to the project.

Before running CLU Discovery, make sure that:

All modules are properly connected and powered

CLU modules are connected to each other

Computer on which OM is running is connected to the same network as CLU.

af://n426

Note! If the network consists of router, it is recommended to connect the computer directly to the

CLU with a network cable when running CLU Discovery. In the majority of cases, CLU Discovery will

run successfully also while connected through the router, however, in the case of a specific router

configuration, CLU Discovery might not find CLU modules.

4.1. Adding modules to the project

The displayed window contains all CLUs found during the CLU Discovery procedure. For a given CLU

module to be added to the project, the check box in the Choice column must be selected.

In this window, it is also possible to change the IP address - the option is called from the context menu

(PPM) for a given CLU (selected in the line). The option of changing the IP address / rewriting the

configuration is available only for newly found CLU modules.

af://n450

Going to the next window (using Next button) a list of all selected (marked in the previous step) CLU is

displayed along with the modules that are connected to it (TF-Bus modules) or are paired (Z-Wave

modules).

The window displays the following information:

Name - name of the device (CLU / module);

Serial number - the number of a given device assigned by the manufacturer (TF-Bus modules) or

during the pairing process (Z-Wave modules);

hwType, hwVer, fwType, fwApiVer - configuration parameters of a given device;

Operation - information on what action will be performed for a given device (CLU / module):

Adding - a new module is added to the project;

Adding (Reassigning) - the configuration is rewritten between the inactive CLU and the

active CLU (applies to the situation in which CLU Discovery was run on an existing project);

Updating - objects of a given device will be updated - in accordance with the update of a

given module (when fwApiVer is changed). In the case of an update two values are displayed

in the fwApiVer column: current value and value before the module update process (applies to

the situation where CLU Discovery was run on an existing project);

Removing - if a given module (TF-Bus / Z-Wave) is not found during CLU Discovery the

objects of a given module in the project are grayed out (applies to a situation where CLU

Discovery has been run on an existing project);

None - no changes to the configuration of a given module (applies to a situation where CLU

Discovery was run on an existing project).

Status - informing about the possibility of carrying out the actions listed in the Operation column:

OK - correct execution of the given operation to the module;

Missing XML interfaces - the given operation cannot be performed because the XML

interface is missing for the given module.

If all modules have Status: OK - it is possible to add / apply changes for a given CLU - using the Finish

button.

In a situation when a given device has the Status Missing XML interfaces, it is not possible to add /

apply changes for the given CLU to which the given module is connected. In this case, update the

interface database and then run CLU Discovery again.

Note! For Object Manager version below 1.6.0, the above-mentioned windows are not displayed

(CLU selection and device status) - all found modules will be displayed as a List.

Colour of the position means:

Green – newly found CLU, which can be added to the project

Red – CLU, which for various reasons can't be added to the project (version not operated by

OM etc.)

No colour – CLU previously added to the project (only if CLU Discovery was used on pre-

existing project)

Modules may be added one by one by clicking Add button, or all at once by clicking Add all CLU

button.

After doing the above, the indicated CLU will be added to the project.

4.2. Replacing / Reassigning modules during Discovery process

Note! The ability to assign modules during CLU Discovery is available for Object Manager version

1.7.0 or higher.

In the case of physical module replacement, during the Discovery process it is possible to assign the

configuration of an inactive (disconnected) module to a new one added to the installation. Assignment

takes place within the entire module (its objects), without the need to assign individual objects of a

given module.

The window appears only when there are possible assignments between modules of the same type.

The view presents the newly found CLU and / or modules and their possible assignments. Devices are

presented in the hierarchical form CLU-> Modules . Modules that do not match the assignment they are

greyed out. For matching modules the Assignment column for a given module displays a list of inactive

modules whose configuration can be assigned.

af://n499

In the case of assigning the CLU configuration, after selecting the inactive module, a message is

displayed that the IP address has been changed to the inactive CLU address - the change will be

performed if the given address is available.

In case of busy / no access to the address an adequate message is displayed and the IP address remains

the same as given during the Discovery process.

Note! If the assignment for a CLU is removed, the assignment made between the modules of a

given CLU is removed, and it is possible to restore the previous IP address given during Discovery

(if it was changed during the assignment) - the following message is displayed:

After assigning in the next step (Discovery summary), the assigned modules have the status Adding

(Reassigning).

By clicking the Finish button, the configuration is sent to the CLU.

5. CLU status

5.1. Module diodes

Based on the LEDs of the CLU module - the user is informed about the current status of power supply,

configuration and current device mode.

af://n517
af://n518

Status Description

No power supply

Green LED flashes every 500ms - system OK

Configuration error, system not configured or no communication with the IOM module

The green LED flashes every 200ms - CLU in the mode of adding Z-Wave modules

The red diode flashes every 200ms - CLU in the mode of removing Z-Wave modules

The green LED is on for 1 second, then both LEDs blink three times (every 200ms) -

confirmation of adding the Z-Wave module

Both LEDs blink three times (every 200ms), then the red one goes out and the green

one blinks every 500ms - confirmation of removing the Z-Wave module

Both LEDs blink every 700ms - CLU in logging mode

5.2. CLU module icon in OM

Through the appearance of CLU module icon in the objects menu of the opened project, the user is

informed about the current status of both configuration and connection between OM and CLU. For each

CLU in the project, there are four work modes: normal, disconnected, configuration error, and emergency

mode.

Normal mode

CLU in the normal mode does not contain configuration errors, and the connection between OM and CLU

is active. Name of the module is displayed in black, and the icon marking this status looks like this:

If the name of a specific CLU is preceded by * symbol, it means that there was a change in

configuration which has not been sent to this CLU yet.

Disconnected

If there is no connection between CLU module and OM (no physical connection or error in LAN

configuration), the name of CLU will be displayed in red, and the icon marking this status will look like

this:

If the CLU is in disconnected mode, the user has an option of making and saving changes in the project,

but the new configuration won't be sent to CLU – that is only possible in normal mode.

Configuration error

af://n549

If during work on the project there are changes made which contain configuration errors (e.g. creation of

connection with non-existent object, or entering non-existent command), CLU in which the error was

found will be switch to Configuration error work mode. Name of that CLU will remain black, but

there will be error symbol displayed next to its icon:

After dragging cursor over the CLU, a field with list of errors will appear.

Note! OM does not allow sending configuration containig errors to CLU

Emergency mode

If configuration containing syntax errors is sent to CLU (e.g. after sending script in the text edition), or if

LUA interpreter crashed as a result of script's work, CLU will switch to EMERGENCY MODE. The name of

the CLU will change its colour to orange, and the failure symbol will appear next to its icon:

If CLU switched to emergency mode, check accuracy of recently made changes and send configuration

to CLU again.

Note! The CLUs taken out from the box (in the delivered condition) are in Emergency mode!

6. Connecting Z-Wave modules

Wireless IOM modules communicate with other system elements using Z-Wave protocol. They work and

are recognisable (both from OM level and from control level) the same as other modules in the GRENTON

system.

To enable using Z-Wave modules in the system, that system must contain at least one module CLU

equipped with Z-Wave controller.

Note! Adding the Z-Wave module to the system should take place after placing it in the

installation's destination - this is due to the requirements for creating the mesh network, the

range of the device operation and disturbances of the Z-Wave network.

6.1. Adding Z-Wave modules

You have to add IOM Z-Wave modules to CLU for them to be present in the system. You can do it in two

ways:

1. By clicking LINK button on CLU module In order to do that, press Link button placed on the

CLU module with Z-WAVE controller.

af://n577
af://n583

After pressing the button, the CLU switches to the mode of adding modules - the ON diode blinks all the

time at intervals of 200ms.

Then, press the button once on the added Z-Wave module (according to the instruction manual). The

correct addition of the module will be signaled by lighting the ON diode for 1 second, and then by

blinking the ON and ERR LEDs three times in intervals of 200ms. After completing the addition of the Z-

Wave module, the ON LED will flash at 500ms. After completing the addition of Z-Wave modules, CLU

Discovery should be performed - new Z-Wave modules will be added to the project.

2. Using Object Manager software This way of adding allows to define time for which CLU will

await for wireless modules to "introduce" themselves, therefore it is very useful when you want to

add modules located further away from the CLU and need more time to press the button on them.

To add wireless modules using OM, open object configurator of Z-Wave CLU module to which you will

add wireless modules (double-click CLU icon on the objects list). Then, set time (as parameter) for

StartZwaveDiscovery method in the Control tab and invoke this method.

Set time will be the time for which CLU awaits for new Z-Wave modules to connect. When the time is up,

the search is finished, even if no modules were found. Entering 0 will cause the search to end

automatically after finding one new module.

After calling the StartZWaveDiscovery method, press the button located on the added Z-Wave

module. The correct addition of the module will be signaled by lighting the ON diode for 1 second, and

then by blinking the ON and ERR LEDs three times in intervals of 200ms. After correctly adding the Z-

Wave modules, the ON LED will flash at 500ms. After completing the addition of Z-Wave modules, the

CLU Discovery process should be performed - new Z-Wave modules will be added to the project.

Note! Calling the StopZWaveDiscovery method interrupts the search for Z-Wave modules.

Note! Do not add modules to the system that have already been connected to it. If you are not

sure whether a module has been added before, you should first perform the removal procedure for

this module.

The situation is similar when the Z-Wave module was connected and was not removed from

another controller - the procedure of removing the module should be performed first.

6.2. Removal of Z-Wave modules

For the wireless module to stop appearing in the system configuration, it must be removed from it.

To do this, it is necessary to press the Unlink button on the CLU with the controller.

After pressing it, the CLU goes into the module removal mode - the ERR diode blinks all the time at

200ms intervals.

Then press the button on the wireless module to be removed. Correct removal of the module will be

signaled by blinking ON and ERR LEDs three times in 200ms intervals. After completing the deletion of

the Z-Wave module, the ERR LED will turn off and the ON will flash at 500ms. The last step will be CLU

Discovery - the removed modules will be grayed out.

6.3. No communication with the Z-Wave module - a mechanism

for counting communication failures and blocking device

communication in the Z-Wave network

Note! The presented mechanism is available for CLU from version 04.07.41 (183201)

Failures in communication with a Z-Wave device may occur when:

the Z-Wave module is damaged,

no power supply (230V) on the module / depletion of the battery supplying the module,

the device works on the border of the range with the controller / it is not within the range of the

controller,

the controller (CLU) after sending the order will not receive confirmation from the device (ACK).

Information about the device status in the Z-Wave network can be read from the Object Manager using

the ZWAVE object of the given Z-Wave module.

Note! ZWAVE_CONFIG objects are not available for all Z-Wave modules - they have Grenton Z-

Wave modules and selected modules that are supported by the Grenton system.

The following features are available for a given object:

af://n606
af://n612

NodeID - Number of the module (node) in the Z-Wave network (transmitted for each Z-Wave

module after adding it to the controller)

Banned - Information on blocking Z-Wave communication with the module

FailCount - The number of unsuccessful attempts to communicate with the Z-Wave module

Failure counting mechanism in communication:

In the event of failure of communication with the module (no response, confirmation, etc.), the

FailCount feature of the ZWAVE_CONFIG object of the Z-Wave device is incremented.

Another attempt to send an order to the retry device is every 15 seconds - 3 attempts are made to

communicate with the device.

In the case of 3 attempts to communicate with the module, the Banned feature is set to 1 and all

communication with the module is blocked.

Locking mechanism for communication with the module

When the Banned feature is set to 1, communication with the Z-Wave device is blocked - this

means that all action calls on the device (ie change of output status, query for parameters) are not

sent by the CLU to the blocked module.

You can assign any action when you block communication with a given module using the

OnBanned event.

A short query (NOP) is sent to the banned module every 1.5 minutes:

if the module does not confirm receipt of the query, the Banned attribute continues to be 1,

and the next query is repeated every 1.5 minutes,

Note! If more than one module is banned, then the NOP is sent every 1.5 minutes to the

next banned module. Example:

3 modules (A, B, C) banned

CLU - NOP -> module A

1.5 minutes break

CLU - NOP -> module B

1.5 minutes break

CLU - NOP -> module C

1.5 minutes break

CLU - NOP -> module A

e.t.c.

if the module confirms receipt of an inquiry (ACK), the Banned attribute changes to 0 - it means

that it is possible to send commands again to a given device.

It is possible to manually remove the lock - using the RemoveBan method.

After calling this method, the Banned property changes value to 0 - it means that it is possible to

send commands again to a given device.

Note! RemoveBan is not synonymous with re-communication with the module - it allows re-

sending an order / query to the module! In the event of failure, the entire blocking process is

restarted!

In the event of communication failure with the module, the entire mechanism (counting failures in

communication and blocking) starts from the beginning.

It should be remembered that in case of unblocking communication with the module, the FailCount

feature is not reset - this can be done using the ClearFailCount method.

6.4. Z-Wave network configuration tips

When creating a Z-Wave network, it is important to:

Z-Wave network configuration was carried out after installing devices in the workplace.

The Z-Wave network is defined statically. Z-Wave devices should be linked when they are in their target

locations. Changing the position of Z-Wave devices after adding them can cause unexpected problems

with communication in the Z-Wave network - with all devices!

The antenna (in modules that have it) has not been folded or wrapped around the module.

The antenna should be facing the module if possible.

The battery modules are not woken up at the same time.

Waking modules at the same time leads to delays in operation. In order to avoid the described situation,

different awakening times should be used for all devices (in the ZWAVE_WAKEUP object for battery

modules) and selected in such a way that the set times have the largest possible "smallest common

multiple", e.g. 57min, 58min, 59min , 60min, 61min, etc ...

There are no inactive modules (damaged or incorrectly removed) in the Z-Wave network.

The linked module that is missing in the system causes continuous attempts to renew communication

with it, which in turn can introduce temporary delays and deficiencies in communication with other

devices as well.

Note! For CLU Z-Wave placed in a box/cabinet, it is recommended to use longer antennas and take

them out of the switch cabinet.

6.5. Clearing information about nodes

It is possible to simultaneously remove all Z-Wave modules from the CLU. The HardReset function is

used for this purpose look up XI.1..

7. Sending the configuration to the CLU

af://n694
af://n718
af://n721

The configuration is stored in the OM and until it is sent to the CLU, it is not taken into account in the

operation of the system. To send the configuration to the CLU, press the 'Send configuration' button in

the menu.

Object Manager detects on which CLU the change was made and sends the configuration.

Note! After sending the configuration, the CLUs will be restarted, so the lamps connected to the

system may go out, and the system may not react for a few seconds to press the switches, etc.

8. Initial values of features

Each object in the system has its own list of features, some of which can be set. Features can be set

during system startup (CLU restart), thanks to which it is possible to configure the behavior of objects

once (eg setting the touch panel buttons as bistable, monostable). Initial values of features are set in

the tab: Embedded features in the object's form (CLU, inputs, outputs):

To set the selected feature, in the appropriate field, enter the desired value in the Initial value

column, and then send the configuration to the CLU.

9. Creating basic connections

Calling reactions in the system (eg switching on the lighting after pressing the key) is accomplished by

creating links between objects. As a rule, these are connections between the entrance (eg switch) and

the output (lamp). However, the system does not limit the creation of connections and allows them to

create events between events of any other objects between events, which makes it possible, for

af://n728
af://n733

example, to switch on the LED lighting when the main lamp is turned off.

Associations can be created in two ways:

By using configuration diagrams - it allows quick creation of typical switch-lamp connections;

By manually creating event-method bindings - which will provide great flexibility in creating

system logic.

Creating basic connections by using configuration diagrams

To create a binding using the configuration scheme, do the following:

Click on the selected input;

Go to the User schemes tab, select an interesting scheme from the list;

By clicking , select the outputs to be triggered;

Only outputs for which it is possible to assign a given logic will appear in the output selection.

To select more than one output, select objects by holding the Ctrl or Shift key on the keyboard.

After confirming the selected outputs, Object Manager will automatically create event associations with

object methods.

Configure the remaining inputs and send the configuration to the CLU.

Manually creating event-method bindings

To manually create an event-method binding:

From the list of objects in the system, select the object you are interested in, double-click it;

Go to the Events tab:

Find the event to be linked from the list and click + ;

In the method selection format, select the object, method and parameters in sequence:

Configure the remaining events and send the configuration to the CLU.

Up to 4 exit methods can be added to each event. If it is necessary to add more methods or conditions, it

is suggested to create a script.

If the user created individual event-method connections using Events tab, they are visible on the list

as User configuration .

10. Performing an update

af://n784

10.1. The process of updating the interface database

If the option to automatically update the interfaces database is marked when the Object Manager is

started for the first time, there is no need to run it again. Otherwise, remember to update regularly.

Updating the interfaces database should be done always before updating the software of a given

Grenton module, and it is necessary to connect to the internet to perform it (the update takes place

from the server).

In order to update the interface database in the Object Manager:

Select Tools from the menu bar.

Select the item Interfaces base.

Select Update interfaces database from the list displayed:

After a while a window will appear with detected changes in the interface database, which should

be accepted by clicking the OK button:

Then a window will be displayed informing you that the interfaces base has been reloaded:

af://n785

The final stage is sending the configuration to the central logic unit, which follows automatically.

Note! If the configuration is up to date, then after choosing the option: Update interface base, the

following message will be displayed:

10.2. The process of updating the firmware on the CLU

The firmware update on the CLU is carried out in order to: add support for new devices and increase the

capabilities of the system. More details can be found in the Release Notes.

Note! Firmware update CLU 2.0 is only possible in Object Manager version 1.3.0.1927 or higher!

Note!

Device status display is available in Object Manager version 1.3.5.240201 or higher!

Note! The following requirements must be met for the update process to run correctly:

The computer must be connected to the AC adapter, it cannot be on battery power.

The network connection between the CLU<->router<->computer must be wired, the WIFI

connection cannot be used.

Do not perform any actions on the Grenton system while updating the firmware.

af://n816

A. Update from Grenton server

In order to to update the firmware on the CLU you should:

Select Tools from the menu bar.

Select item Firmware update view:

Select the object type CLU_ZWAVE_2 . Selecting the check box is only possible if the current

firmware on the CLU is out of date:

Select the Update selected option. Read and accept to continue:

Once accepted, the upgrade process will begin:

af://n835

Note! During the upgrade process, do not turn off the power or perform other activities on the

system.

If the firmware update fails, there will be two attempts to update the module. If they also fail, the

message [FAILED] will appear next to the module:

If there are TF-Bus modules in the queue for updating and the CLU update fails, their update will

be canceled:

If the update is successful, [UPDATED] appears when the CLU is updated.

To complete the update process, click Close button.

If the update was successful, the firmware version should match the target version and the device

status should be "OK". If the OM cannot establish a connection with the CLU then the status will be

"DISCONNECTED".

Note! After the update is completed, perform CLU Discovery.

You can update more CLUs in one process. To do this, select all CLUs to be updated on the selection list.

B. Update with a .ZIP file

By default, information about the current firmware is downloaded from the Grenton server. However,

you can update CLU from a local file. Updating from a file is done using .zip packages prepared by

Grenton.

Note! Do not rename the .zip file provided by Grenton. The file must have an appropriate name to

be properly loaded.

To update from a file you need to:

Expand the Firmware repository and use the Choose a file option:

af://n880

After loading the file, you will be able to select the module that can be updated. Under Target Firmware,

the version number of the firmware to which the update will take place appears.

After selecting the module, select the Update selected option and continue the installation,

similarly to the standard update from the server look up VI.10.2.A..

10.3. The process of updating the firmware of the 2.0 series

modules

Note! The device firmware update process is only possible for modules from the 2.0 series!

Note! The following requirements must be met for the TF-Bus device update process to run

correctly

The computer must be connected to the AC adapter, it cannot be on battery power.

The network connection between the CLU<->router<->computer must be wired, the WIFI

connection cannot be used.

Do not perform any actions on the Grenton system while updating the firmware.

You should start with the CLU firmware upgrade, then perform CLU Discovery and in the next

step you can upgrade the modules, after which CLU Discovery should also be performed.

af://n896

The 2.0 series modules update is similar to the CLU firmware update. Before starting the update, keep

the following in mind:

Firmware update of a given module is only possible if the firmware on the CLU is current.

Otherwise, you must also select CLU, which will be updated first.

The update is carried out for all modules of the same type. By selecting a given module, all

modules of the same type on the list (if any) are selected.

If an update is made for a given module to a version that changes the firmwareApiVersion of a

module (for example, from version 1.x.x to 2.x.x) an icon is displayed next to the module in the

Target firmware column and after selecting the module a warning about the interface changes

and creating new objects (_UPGRADED) for the device after CLU Discovery is displayed.

At the start of the process, it is not possible to stop updating for a device that is currently being

updated. The update will be aborted after the process is completed for a given group of devices

(canceled for the next group of modules).

In some cases, the update of a given device can be multi-step. In this case, after completing the

upgrade process, check whether another new firmware version for the module is available.

After updating the module, check if the firmware version is the same as the target version, and if

the device status is "OK".

If the module shows the "BOOT" status after the update, it means that the firmware update

process has been interrupted and the device is still waiting for the new firmware. After closing the

update process window, a warning will appear:

In such a case, the update should be repeated. The "DETACHED" status means that the CLU cannot

establish connection with the module. In such a case, check the TF-Bus connections and perform a reset

by disconnecting the power.

Note! After completing the update, perform CLU Discovery. It should not be performed if any

module has the "BOOT" or "DETACHED" status!

10.4. CLU / modules status in the firmware update window

The modules status is displayed in the firmware update view table. If there is a status change while the

update window is open, the list must be refreshed using the "Refresh" button.

Note!

Device status display is available in Object Manager version 1.3.5.240201 or higher!

Note!

The functionality of device statuses is available for CLUZ fw. version 5.06.03-2043 or higher!

A. CLU status

Status: OK - Correct connection with the CLU.

Status: DISCONNECTED - The OM cannot connect to the CLU. This status is when the OM does not get

a response from the CLU. In this case, check if the network cable is properly connected to the CLU /

router / switch or perform a voltage reset of the CLU.

af://n934
af://n943

B. TF-Bus modules status

Status: OK - Correct connection of the module with the CLU.

Status: BOOT - The module is currently in the bootloader. This state appears when the module update

is interrupted. In this case, the module must be updated again.

Note! Do not execute CLU Discovery if the module has the BOOT status! The module will not be

discoverable by the Discovery process. If this happens, you will need to force an update for that

module look up VI.10.5..

Status: DETACHED - CLU cannot establish connection with the module. In such a case, check the TF-Bus

connections and perform a voltage reset of the CLU.

af://n950

10.5 Forcing the module update

If a properly connected module is not detectable by the Discovery process, it is possible that the

firmware for that module has not been properly loaded. In such a situation, it is necessary to force the

module update.

In order to force a module update, you should:

Select Tools from the menu bar.

Select item Firmware update view:

Right-click on the CLU module and select the option "Force update":

af://n962

Select one module for which the forced update is to be performed and press the Force button:

After reading the message, select "Yes" to continue:

After a successful update, [UPDATED] will appear:

CLU Discovery must be performed when finished.

11. Diagnostic view

Note! Diagnostic view is available for Object Manager version v1.4.0 (or higher) and for CLUZ fw.

v5.7.1 (or higher).

The diagnostic view presents information about all CLU in the project and the modules connected to

them.

To open Diagnostic View in Object Manager:

Select Tools from the menu bar,

Select Diagnostic view.

af://n992

A window showing a list of all CLUs in the project will appear:

The view presents the following information for the CLU:

Type - device type name,

Serial Number - device serial number,

Status - CLU status,

IP Address - device IP address,

Cloud Connection - cloud connection status,

Voltage - CLU supply voltage value,

HwType - hardware type,

HwVersion - hardware version,

FwType - firmware type,

FwVersion - firmware version,

FwAPIVersion - API firmware version.

CLU statuses:

OK - CLU returns diagnostic data,

DISCONNECTED - CLU not responding,

LOGGING - CLU in logging mode,

DIAGNOSTICS_OFF - CLU responds but does not return diagnostic data.

After clicking on the CLU, a window appears with all TF-Bus modules connected to it:

The view shows the following information for TF-Bus modules:

Type - module type name,

Serial Number - serial number of the module,

Status - connection status with TF-Bus,

Order - the sequence of connection to the TF-Bus (set manually),

Voltage - voltage value on the bus for the module,

Fails - number of failed module responses,

Banned - information if the module is banned,

HwType - hardware type,

HwVersion - hardware version,

FwType - firmware type,

FwVersion - firmware version,

FwAPIVersion - API firmware version.

In the lower right corner there is information about the number of used modules:

Note! If the module does not have a voltage measurement, "0.0 [V]" will be displayed in the

Voltage column.

If the CLU has Z-Wave modules connected, it will be possible to display them in the Z-Wave tab:

The view presents the following information for Z-Wave modules:

Type - module type name,

Serial Number - serial number of the module,

Status - connection status with CLU,

NodeID - Node ID of the module,

HomeID - Home ID of the module,

ProductID - Product ID of the module,

ManufacturerID - Manufacturer ID of the module,

TypeID - Type ID of the module,

Fails - number of failed module responses,

Banned - information whether the module is banned,

Signal - signal strength,

Battery level - battery level,

HwType - hardware type,

FwAPIVersion - API firmware version.

Note! The values for Signal and Battery level are updated after the module wakes up. If

the module is banned (Banned = true) the current values will not be displayed.

Note! If the Z-Wave module is not a battery module, "N/A" is displayed in the Battery level

column.

For CLU with the TelnetLogLevel embedded feature, a Logs tab is available to record and display

the logs of a given CLU:

Note! To fully use the described logging functionality, you must have Object Manager version

1.7.0 or higher and CLU with firmware 5.10.01 or higher.

A textbox is available in the view to present the logged logs. Logging level specified via CLU embedded

feature TelnetLogLevel or SetTelnetLogLevel method:

OFF,

ERROR,

WARNING,

INFO,

DEBUG.

Note! Only one telnet connection is supported within one CLU.

The maximum number of characters for one log line is 1000.

The functionality of sending logs is available in scripts, using function blocks. It enables to display logs

with the designations: [ERROR], [WARNING], [INFO], [DEBUG]. When using the print function the

value is displayed in logging at the login [DEBUG] level.

The logging functionality is also available whenever the CLU is in the Emergency mode. It is then

possible to display the reason for entering Emergency mode.

11.1 Configuration of the diagnostic view

A. Refreshing the view

The diagnostic view is refreshed when the "Refresh" button is pressed, or every 5 seconds if the Auto

refresh option is selected.

B. Table configuration

Visibility and the order of displaying columns can be set after pressing the "Column settings" button,

located in the upper left corner of the window.

The configuration window will appear:

af://n1131

It is also possible to change the order of the columns by dragging their names in the main window.

C. Sorting rows

By clicking on a column name, you can sort rows in ascending or descending order or return to the

default display.

D. Setting the sequence of connection to the TF-Bus

The order of the modules connected to the TF-Bus must be set manually, otherwise the modules in the

Order column will be marked as "Unordered".

To set the order of modules, click the "Tfbus order" button:

Then a window will appear in which you can set the order of modules in relation to CLUZ (Center 0)

using the Up and Down buttons:

E. Configuration of the login tab

Available buttons in the tab:

Start log,

Stop log,

Word wrap,

Clear log,

Scroll lock.

12. Other operations on the system

Cleaning configuration

The user always has the option of clearing the configuration of any CLU in the system. In order to clear

the configuration on the selected CLU, first we need to select them, and then click on the cleaning icon.

Clearing the configuration deletes all changes and settings made and sets default values.

af://n1167

Note! After clearing the configuration on the given CLU, the links between the objects of the

other CLU and the cleaned CLU objects will be lost!

Downloading configuration from an existing object

Object Manager allows you to download the configuration located in an existing and operating system.

The configuration can be downloaded only when creating a new clean project - it is not possible to

download the configuration for a project that already has some data.

Adding a new CLU or IOM module

After installing the new module, add it to the system. The module must be plugged into the system bus

(before disconnecting the new module, the bus power supply must be disconnected). In the case of Z-

Wave modules, add them to the controller - look up VI.6.1.. After correct installation of the module, you

should run CLU Discovery, it will automatically search and add a new module. If there are unused I / O in

the system, the system will launch a list that allows assigning inactive I / O to the I / O from the new

module. After completing the above procedure, the module will appear in the list of objects.

Replacing the IOM module (inputs / outputs)

If a given module is exchanged for a different one but with the same parameters (same type and same

number of inputs / outputs), the module must also be replaced in the project in the Object Manager

program. After correctly installing and connecting the module, the CLU Discovery function must be

started. The system will automatically search for and recognize a new module, and automatically assign

an input / output from the "old" module to it. After searching, a list will be displayed with I / O

assignments between the mentioned modules and an option to confirm and accept the change. If you

accept the changes, nothing will change in the list of objects, and all assignments will be made

automatically. Lack of acceptance will cause new items to appear on the list of objects, while at the

same time inactive inputs / outputs will be displayed (marked in gray).

Exchange of the module from one CLU to another in the same system.

In situations where it is necessary to switch the IOM module from one CLU to another, physically

overpass the module (switch cables), and then perform the CLU Discovery function, which will update

the list of modules in all CLUs

VII. Advanced configuration functions

1. Containers

In order to manage available inputs / outputs more easily, OM has a function of containers, which allow

to group inputs/outputs according to needs of the user. Containers can be used for example to sort

inputs / outputs according to their function (lighting, heating, etc.) or their placement in the building

(living room, kitchen, etc.).

To add new container, click container icon in the menu, then name it. New container icon will appear in

the tree on the level of the main container. No Polish letters can be used in the container name.

The inputs / outputs are assigned to each other by: dragging from the CLU or after clicking on it with

right mouse button and choosing option Move to container.

2. Scripts

Scripts enable creation of very complex logic using conditional functions, loops, and variables, which

also allows to create complex scenes that modify their actions depending on external conditions.

Created scripts are displayed in the system as CLU methods and can be invoked by being added to

events of any object. They can also be invoked from the level of other scripts.

To create a scripts, click CLU on which the script will be stored, then select option Create script in

the actions menu, as shows picture below:

After naming the script (no Polish letters allowed), script builder that enables script creation will open in

a tab. Script builder can work in two modes: graphic and text. After new script creation, script builder

automatically launches in the graphic mode. You can switch to text mode by clicking Text mode , as

shows picture below.

af://n1189
af://n1190
af://n1195

Note! Switching from graphic mode to text mode is irreversible. If a script was created in graphic

mode, it will be converted to the text form. However, after edition in text mode, going back to

graphic edition won't be possible.

2.1. Script creation in the graphic mode

After opening, a clear worksheet appears.

af://n1205

There is components list on the right of the worksheets. Drag commands from the list to the worksheet

to add them. After dropping a command on the worksheet, a dialogue box open which allows to

determine command parameters and conditional instructions. After adding a new component to the

worksheet, a connection between last added component (or start if it's the first component) and

currently added component is created automatically. Commands are fulfilled in order of connections,

beginning with start. If you want to change the order of fulfilling commands, delete existing connection

and add a new one (according to desired order) using Link tool.

Note! Leaving a component, which is not connected to other components, in the worksheet, will

be seen as error and displayed as configuration error of CLU o which the script was created.

Script Builder uses the following components:

A. Action

The block in which the order to be executed is entered. The command might be not only method

invocation, but also value change or script invocation. After dragging action icon into the worksheet, a

window with objects list and their methods opens. Scripts are available on the list as CLU methods after

clicking CLU on which they are located.

B. Condition

Logic block realising IF then ELSE function. Using this block makes it possible to make the action

dependent on the conditions, eg if it is dark, turn on the light, if not, turn it off. After dragging block to

the worksheet, enter condition which needs to be fulfilled in its parameters. After adding "condition"

component, add at least one "action" or "Operation on variables" component and connect it with

"condition" component with an arrow which head points at the action. After adding an arrow, OM will ask

whether the action should be performed when condition is met (true) or when it is not (false). Two

actions can be connected to one condition - when performed when it is fulfilled, the other when it is

not. To change the true / false assignment, double click on one of the arrows coming out of the

condition.

Picture below shows easy conditional instruction which changes light intensity depending on the hour.

af://n1214
af://n1218

Conditions can be connected via cascade connection, thanks to which operator and can be

implemented (action is performed when two or more conditions are fulfilled). The following diagram

shows an example of using cascade connection:

Conditions can compare any object feature or script parameter with a number, a text, other feature, or

other script parameter.

C. Function block

Contains instructions invoked within the script which can be used for creating more advanced scenes

("delay" function) and debugging ("print" function). After dragging the icon of the block into the

worksheet, a window with list of function blocks opens. The list contains:

DELAY Allows to set time delay between consecutive commands during script realisation

PRINT The command that causes the display of the declared text in debugging.

af://n1228

Actions Description

= Setting the number 10 as the value of the user feature / script parameter.

+= Adding the number 10 to the value of the user feature / script parameter.

-= Subtracting the number 10 from value of the user feature / script parameter.

*= Multiplying the number 10 by the value of the user feature / script parameter.

/= Dividing the value of the user feature / script parameter by the number 10.

++ Increasing the value of the user feature / script parameter by +1.

-- Decreasing the value of the user feature / script parameter by -1.

D. Operation on variables

The block enables creation of complex logical functions using variables. The variables must be declared

first so they can be used in the script. Variables can be declared in scrip parameters and CLU user

features. A variable declared as script parameter can be used within the script to make calculations

during running of the script. Data stored within that variable is not available outside the script. To store

or use data from variables outside the script, use CLU user features.

When the user feature or script parameter is set to type number , several math operations are available.

Description mathematical operations based on the example above (with the given number value = 10):

2.2. Script creation in the editor

Another method of script creation is using text editor, which gives practically endless possibilities of

script creation using LUA instructions expanded with possibility of using addresses of objects of logical

interface.

af://n1237
af://n1268

Logical interface addresses are treated as functions and can be invoked and used as parameters in

conditional instructions, loops, etc.

The script below shows way of using logical interface addresses in scripts:

2.3. Script parameters

Scripts can have initial parameters, which are sent during their invocation (e.g. in the event) and then

can be used inside the script, e.g. in conditional instructions. Script parameters are created by clicking on

Script parameters , then a window will open in which you should select Add parameter and

define the name, value to run, default value, type and restrictions. To delete a variable, click the button

on the right.

Note! Variable names cannot contain spaces and start with a digit or a character.

af://n1274

Value to run - this is the value that is set when running the script using the "Run script" button in the

Object Manager.

Default value - this is the parameter value that will be used if the parameter is not specified when

calling the script.

Type - allows to determine type of data that will be stored in the parameter:

string – for text data;

number – for numerical data;

boolean – for boolean variables true / false .

Restrictions - for numerical parameters, restrictions of maximum and minimum parameter values can be

set. In the case of invocation of script outside this range, the script will be invoked with default

parameter value. Restrictions must be specified in the format x-y, where x and y are the minimum and

maximum values of the restriction. After entering the restriction, complete the Value to run field.

Note! Script parameter contains values which can be used only within it (local values). These

values are not available in other scripts. If it's necessary to save values to use in other areas, use

user features available in CLU, or send the value to another script using its parameter.

Note! Local variables in one script may only be used by the CLU on which the script was created.

In order for the variable to be used by other CLUs, the user feature must be defined on the CLU,

e.g .:

(CLU_A - CLU on which the script was created)

2.4. Scripts invocation

Scripts are displayed and treated as CLU methods . They can be invoked from events of any object, and

from action block in another script identically as other methods.

Invocation by an event Picture below shows adding script to a switch. The script will be started

after pressing the switch.

CLU_A->Lampa1->SetValue(local_variable)

CLU_B->Lampa2->SetValue(user_variable)

af://n1301

Invocation from script level The following figure shows how to call from the script level using

the Run script button.

Invocation from another script Picture below shows fragment of diagram in which another script

was invoked using action block.

Calling a script with a parameter

To specify input parameters when calling the script, enter them in parentheses in the correct order:

CLU-> script (12, "text", true)

where: parameters were specified for a variable of type number, string and boolean.

To assign specific features to local variables, enter the full paths of given features:

CLU-> script_A (CLU-> AnalogIN1-> Value, CLU-> BUTTON1-> Label, CLU-> CloudConnection)

where: parameters were specified for a variable of type number, string and boolean.

The input parameters can be easily defined using the Parameters window:

2.4. Find / Replace function

Note! The Find / Replace function is available in Object Manager version 1.6.0 or higher.

In the case of scripts created in the editor, it is possible to perform the operation of finding and

replacing data strings in the script. The Find / Replace function is available from the Edit -> Find /

Replace menu or it can be called in the script using the Ctrl + F keyboard shortcut.

af://n1331

When searching for a given string, it should be placed in the Find text box, while when searching and

replacing, the new phrase should be enter also in the Replace with text box. The window contains

options that define the specificity of searching for a given phrase, e.g. specifying the direction of the

search, the scope for which the search is being performed, or the case-sensitivity of the letters.

Actions available:

Find - the phrase entered in the Find field is searched;

Replace - the found phrase is replaced with the text entered in the Replace with;

Replace/Find - the indicated phrase is replaced and then the next text (entered in the Find field) is

searched;

Replace All - the replacement occurs throughout the script for the given phrase.

Note! The Find / Replace feature is not available for scripts in graphic mode.

2.5. Copying scripts

Note! The copy option is available in Object Manager version 1.6.0 or higher.

af://n1351

In the case of scripts created in editor, it is possible to make a copy of the script. The script can be copied

in the area of a given CLU as well as it is possible to make a copy of the script to another CLU..

After calling the option, the Copy of the script window is displayed in which you must select the CLU to

which the selected script will be copied and a new script name.

The copied script is added to the list of scripts of a given (selected) CLU.

Note! Script copying is not possible with scripts in graphic mode. When you try to copy, the

following message will be displayed:

3. Date and time

af://n1362

Name Description

Uptime Work time of the device since the last reset (in seconds)

Date Shows current date

Time Shows current time (hh:mm:ss)

Day Shows number of current day of the month

Month Shows number of the current month

Year Shows number of the current year

DayOfWeek Shows number of current day of the week (0=Sunday)

Hour Shows current hour(without minutes and seconds)

Minute Shows current number of minutes since the last full hour

LocalTime Shows current local time maker

TimeZone Shows the current time zone set

NTPServer Shows the address of the UTC time server

CLU is equipped with real time clock (RTC) powered by built-in battery. CLU provides several features

which can be used in the script. The full list of time-related features reads as follows:

LocalTime feature is worth noticing - it shows number of seconds since 1970 (local time) as one

figure. It can be useful for checking how much time has passed from the previous script running or

event.

The current time (in UTC form) is automatically downloaded to the CLU from the NTP server and

corrected by the TimeZone set. You can also set it manually using the SetDateTime method.

If, while opening the project, the Object Manager detects that the time on the CLU is out of date, it will

ask the user to set the current time to the CLU.

VIII. Visual Builder – Smartphone control

Note! Support for Visual Builder functionality has been ended. The Home Manager interface

creator will be removed in the next versions of Object Manager.

1. System control on the level of smartphone

The system enables control using any devices working on the basis of both android and iOS operational

systems (tablets, mobile phones, media players). For each system, one or numerous interfaces can be

prepared, each of which can contain many subpages. It enables creation of various interfaces for various

users according to their needs and preferences, as well as logical sorting of control function within each

interface (e.g. each room at separate subpage or dividing by function such as heating, lighting etc.).

Interfaces are created using Visual Builder tool (which is part of Object Manager), then sent to the

application installed on the android or iOS device.

2. Interface structure

Note! Support for Visual Builder functionality has been ended. The Home Manager interface

creator will be removed in the next versions of Object Manager.

Each interface consists of one or many subpages on which control elements (buttons, scroll bars) are

placed. The designer can fully control page layout, arrangement of graphical elements, and interface

appearance which is set by graphic skin selection.

Pages in the interface can be on two levels: level zero and level one. Pages located on level zero are

available as basic interface pages used for navigation by scrolling left / right through them. The user can

get to pages of level one by Link component.

af://n1410
af://n1413
af://n1418

3. Application for smartphone – GRENTON HOME
MANAGER

GRENTON HOME MANAGER application allows to launch user interfaces designed in Visual Builder on

android and iOS devices. A packet prepared in Visual Builder containing interface description, all files

related to it, and configuration data is sent to the application.

Depending on the created interface, the GRENTON HOME MANAGER application allows to check current

system status and control of all functions available in the system.

To control GRENTON system using smartphone, install the application on it, then send interface created

using Visual Builder. The application can be downloaded for free from GOOGLE PLAY store for android

devices and APP STORE for iOS devices. For application to work properly, it must be installed on a device

connected to the same LAN network as GRENTON system, or there must be remote connection created

in the WAN network.

4. New interface creation

Note! Support for Visual Builder functionality has been ended. The Home Manager interface

creator will be removed in the next versions of Object Manager.

To create new interface, select Add interface in actions menu.

After entering name, new interface window will open. It contains two tabs: appearance and pages

(interface window is also available through double-clicking icon of created interface in the objects

menu). Appearance tab:

af://n1425
af://n1430

Contains information on the way of displaying interface, such as: resolution, orientation, available skins

list, and box that creates main menu upon selection.

Upper right corner contains fields File Name . This name, after sending interface to mobile device is

displayed on its interfaces list. In the case of sending more than one interface to one device, remember

to give different name to each interface.

Tab Pages contains list of all created pages.

In the tab, you can change order of displaying pages and delete created pages. After selecting level

zero option, the page will be visible in the main menu. You can also change page icon displayed in the

menu on the bottom of the page and page background in this tab.

If the chosen background has orientation different than the one used in the interface, you can rotate it

using Rotation of backgrounds buttons.

In addition, there is possibility of background scalling. Selecting this option adjusts any background

resolution to the resolution of the interface being created.

Note! Newly created project has no information in the Pages tab, new information appears

whenever interface page is created.

4.1. Graphic skin selection

Skins are graphic settings sets for mobile device interface.

GRENTON skins

The user can use skins provided with OM in created interfaces. List of available skins is located in the

mobile interface parameters.

4.2. Interface pages creation

After interface creation, new pages should be added to it. Page creation is launched from the actions

menu:

After creating the new page and naming it, edition worksheet will open. The worksheet contains two

tabs: Design and UI Simulator (the tabs are located at the bottom part of the page).

af://n1447
af://n1453

The DESIGN tab contains: objects list, main container, components and panels list.

Objects list displays all objects used in the current worksheet.

4.3. Components

Components – list of objects which can be used during interface creation. Components list includes:

Button – works as a monostable button

Button – works as a bistable button

Picture – enables adding picture from an external file

Text – enables adding text box

Slider – enables fluid regulation

af://n1461

Measure – displays object value in an analogue way

Radio – displays object state in digital (on/off) way

Link – enables creating links to other pages within the same interface

Container – arranges components in the workspace in specific way

Camera – allows to display image from an IP camera in the Home Manager application

Thermostat - allows displaying the virtual object Thermostat in the Home Manager application

Intercom - allows you to configure the intercom (configure the connection to the SIP server, assign

methods to specific events and display the image from the IP camera during the call)

ONE BUTTON - allows you to assign the BEACON method to the event in ONE BUTTON mode.

BEACON ZONE - allows you to configure BEACON in BEACON ZONE mode and assign specific

methods to events (after adding BEACON ZONE to the page visible at the bottom).

Selected objects are put in the container by dragging them from the components list and their

arrangement depends on type of used main container.

4.4. Panels

Panels – list of objects that can be used when creating the interface for a mobile device. Panels, unlike

components, occupy the entire page of the mobile interface. The list of panels includes:

Thermostat - creates a panel for the thermostat on the entire interface page in the HM.

The previously created virtual object Thermostat is set as the thermostat panel source.

Statistics - creates a panel for media measurement on the interface page in HM.

After dragging the panel to the interface page, select the objects for which the media measurement will

be presented in the HM. The window will display only objects for which Media Measurement was

previously attached.

af://n1535

Camera - creates a panel for displaying the image from the IP camera on the defined space of the

interface page in the HM.

The RTSP stream of the IP camera should be given as the source of the camera panel.

4.5. Containers

A container is objects compartment determining their arrangement in the workspace.

Objects within the workspace are arranged accordingly to the type of the selected container.

Container type can be changed in object parameters of the container. Parameters window opens after

double clicking container object on the first place in the objects list.

There four types of containers:

1. Vertical – the elements are arranged vertically in equal, automatically created sections.

af://n1555

2. Horizontal – the elements are arranged in horizontal sections

3. Net – the elements are arranged in a symmetrical net.

4. Random – enables any arrangement of the elements within the whole container area

4.6. Adding components and connecting to the system objects

After selecting component from the list on the right and putting it in the main container, windows of its

properties opens automatically. There are three tabs in the window (Source , Events , and

Parameters), that need to be set as follows:

1. In the Source tab, select an object which value should be mirrored, and time of refreshing the

value, e.g. if you put a slider controlling the dimmer in the interface, then the controlled dimmer

af://n1582

must be set as a source so the current value of light can be displayed on the smartphone.

2. Events tab is used for control objects, e.g. a button or a slider. In the tab, there are events

applicable for certain type of objects, which needs to be connected to methods of the controlled

objects.

3. In the Parameters tab there is data on displaying specific object in the interface. The user can

change font and object size, and add edition skin.

Note! If the $value$ command is entered in the Text field, it will display the current value of

the Value feature of the object selected in the Source tab.

After and during interface creation the user has an option of checking its functionality and appearance.

To do that, launch UI Simulator (second tab on the bottom of the page).

4.7. Sending interface to mobile device

To enable system control by a mobile device, the created interface must be sent to GRENTON HOME

MANAGER application installed on the device.

To do that:

Select the interface you wish to send from the list of created interfaces in VISUAL BUILDER - the

icon for sending the interface tool is in the main menu:

On the mobile device, connect to the network in which the CLU is located (after displaying the

send window in the Object Manager);

In the open Home Manager application, select Connect to OM from the main menu;

Enter the IP address of the Object Manager and choose OK:

af://n1602

The mobile device will appear in the send window that was displayed in the Object Manager;

Note! The list displays the devices which have GRENTON HOME MANAGER application running,

and have connect to OM option turned on in the application settings.

Double click on its name or select and select Send file:

In the mobile application, the window for accepting the interface will appear. Select Save:

The transfer status bar will appear on the screen. When finished, the information on the correct

completion of the transfer will be displayed on the upper bar of the program.

After sending the file with the interface to the mobile device, for the remote control to be possible,

the uploaded interface must be loaded.

5. Automatic interface creation - GUI generator

Note! Support for Visual Builder functionality has been ended. The Home Manager interface

creator will be removed in the next versions of Object Manager.

This function allows to quickly create interface through selection of objects which you want to control

from all objects available in the system.

Start automatic user interface creation by launching GUI Generator. Generator icon is located in the

objects menu:

af://n1636

5.1. Creating an interface with available resolution

A. Simple configurator

After clicking on the icon, the GUI Autogenerator window opens. It is a simple configurator in which

you should choose:

resolution of the mobile device

a skin that determines the appearance of icons in the interface

objects (from the list of objects) to be included in the created interface

After selecting the objects of interest, click OK . As a result, the newly created pages appear in the list

of objects (under the icon of the created interface) according to the following figure:

af://n1644
af://n1645

At any time, you can change the interface settings - just double click on its name, and a window will

open with two tabs: Appearance and Pages .

In the Appearance tab, the user can select skins visible in the interface. In this view there is also a

field Main menu. After selecting it, a menu will be created containing all available and selected pages.

The Pages tab contains a list of pages created and allows you to change their parameters, such as:

Level zero - whether or not the page should be displayed in the menu;

Icon – icon displayed in the menu (by default, it is icon from the selected skin);

Background – background of the displayed page. By default, background from the selected skin is

displayed, but the user can define their own background;

Scale background - match the selected resolution to the resolution of the mobile device;

Background rotation - change of the background orientation;

Order - set the order in which the pages are displayed in the menu;

Delete - complete deletion of the page from the interface.

The user also has the option of making changes to the generated pages. Double-clicking on the page

icon will open the edit sheet, containing the two tabs Design and Simulator .

Design tab - displays the workspace contained in the container and allows you to edit the created

page.

The Simulator tab - gives the user the ability to check the appearance and operation of the created

interface from the computer screen (before it is sent to the mobile device).

B. Advanced configurator

After clicking the Generate GUI icon in the Autogenerator window, you can select the Advanced

configurator option. Selecting this option will open a new window in which you should select:

the resolution with which the mobile device is working;

interface orientation (vertical or horizontal);

arrangement of components (grid or list);

objects and features (from the list of objects) to be included in the created interface;

displayed icon and events for each object.

af://n1683

Then, after setting all parameters and pressing OK , the window of the created interface opens. The

window, in addition to the name field of the created interface, contains two tabs: Appearance

and Pages . Their functionalities are exactly the same as in the case of the simple configurator.

After setting all parameters in the created interface window and clicking OK , the newly created pages

appear in the list of objects (under the icon of the created interface) as shown in the following figure:

As with the simple configurator - the user has the option of making changes to the generated pages.

Double-clicking on the page icon will open the edit sheet, containing the two tabs Design and

Simulator .

5.2. Creating an interface with its own resolution

In the case of the advanced configurator, it is possible to create an interface with its own, selected

resolution. To do this:

Click on the Generate GUI icon in the top object window;

Select the advanced configurator;

In the window for selecting the resolution, select the option Customize and enter the dimensions

of the interface;

Select the remaining interface parameters;

Accept the settings you have made.

af://n1702

5.3. Changing the orientation of the interface with its own

resolution

Using the advanced configurator, the change of interface orientation does not take place in the

Autogenerator GUI window.

af://n1717

If you want to change the orientation of the interface with your own resolution, after creating it

you have to:

Click twice on its name;

Go to the tab Pages ;

Delete all visible pages;

Go to the Appearance tab;

Select orientation - horizontal or vertical;

Go back to the tab Pages ;

Add pages to the interface;

Accept changes by clicking OK;

Send the interface to the mobile device.

6. Video intercom configuration

Note! Support for Visual Builder functionality has been ended. The Home Manager interface

creator will be removed in the next versions of Object Manager.

6.1. Connection and configuration of a video intercom

The configuration of a video intercom with the Grenton system is possible for devices connected to a

common network (LAN) or those using remote access to a given network, enabling the use of rtsp

stream of IP camera built into the device. Two or more accounts on the SIP server are needed for correct

video intercom configuration.

An exemplary configuration was made on the intercom Akuvox R26.

Note! The Video intercom panel is available for Object Manager version 1.2.0.180202 and higher.

A. Connection of a video intercom

You should:

Connect the video intercom to the power supply;

Connect the video intercom with the RJ45 network cable to the router.

B. Camera configuration

The video door entry panel in the Grenton Home Manager application uses the visualization of the

camera embedded in the device - if you want to have access to the camera image, you should issue the

appropriate port in the network settings. In order to configure the port, log in to the router settings

using its IP address in the web browser, make appropriate changes, and then save the settings:

Enter redirect settings 1 ;

Find the port settings;

Set the triggering and forwarding port to 554 2 and the triggering and relaying protocol on TCP;

Save settings;

af://n1744
af://n1747
af://n1753
af://n1761

Note! Please note that in order to allow remote connection of the application, it is necessary to

set the port 1234 in the UDP protocol.

Finally, go to the list of currently connected devices to the network and save the IP address of the

video doorphone - it will be needed when configuring the SIP server.

C. SIP configuration:

To create a video intercom configuration you need at least two SIP accounts;

Using the browser, log in to the video intercom 3 ;

It is necessary to find the SIP account settings 4 ;

Then select one of the available accounts (e.g. Account_1) and set its status to activated

(enabled);

In the next step, set the SIP account number / name and password;

After that, it is necessary to enter the SIP server settings (Server IP , Port , Registration

Period) - these settings should appear when creating accounts;

Then find the settings of the codecs used in the operation and activate the PCMU type codecs;

At the end it is necessary to find the settings of the Intercom, where you must configure the

number / name of the customer to which the video door phone should be called (second account

SIP) and set (if possible) the device's behavior when the connection is missed.

Note! If in the setting of Intercom, it is necessary to select one account from several configurable,

select the previously selected one - in the example Account_1!

6.2. Creation and configuration of the application interface

A. Adding a door intercom to the application interface in the Object Manager

In order to add a video intercom to the interface:

From the main menu, click Add interface:

Configure interface settings - choose: resolution, name, skin, add at least one page;

To the created page - from the component palette - add the button Intercom:

In the window that will open after adding the button, set the parameters of the video intercom:

Source - stream rtsp found in the settings of the video intercom or its documentation;

IP address - IP address of the video door phone (previously saved when making its

configuration);

Account - number / account name SIP entered first in the video intercom settings - account

from which calls will be made (selected in item 3 of the chapter "Connection and

af://n1778
af://n1804
af://n1805

configuration of a video intercom"):

Go to the tab Events:

To the OnDoorClick event assign a method to be called after pressing the wicket opening

button in the doorphone panel in the Home Manager application;

Associate the OnGateClick event with the method to be called after pressing the button

for opening the entrance gate in the intercom panel in the Home Manager application;

To assign the OnDoorBell event to the method or script to be executed when the call is

made - when the bell on the intercom is pressed:

Click OK;

Send the interface to the mobile device - look up VIII.4.7.

B. Home Manager application configuration

In order to carry out the configuration:

Open the Home Manager application;

Select Settings from the main menu (gearstick pictogram);

From section Intercom select SIP configuration 5 ;

In the settings specify:

Server address - server IP address SIP on which the accounts were created;

User name - number / account name SIP to which calls will be made - specified in the entry

phone settings, as the destination account for receiving calls (selected in item 3 of the

chapter "Connecting and configuring a video intercom");

Password - password for the above SIP account, to which connections from the interphone

will be made:

af://n1845

Confirm your entries by pressing Save;

Correctly carried out configuration will cause the screen of the mobile device - in its notification

bar - to display information about the connection to the SIP server;

Exit the application settings.

6.3. Making a call from the intercom

1. On the intercom, press the call button.

2. Regardless of whether the Home Manager application on the mobile device is open, a connection

will be established - the door intercom panel will appear on the screen.

3. The button on the top left is used to receive a call - until it is used - the caller will hear nothing and

the interphone will still ring.

4. The OnDoorClick and OnGateClick events can be triggered from the door video panel

position, which will work depending on the setting made in the Object Manager.

5. In the doorphone panel there is also a button for switching on / off the hands-free mode.

af://n1874

7. IP cameras image operation

Note! Support for Visual Builder functionality has been ended. The Home Manager interface

creator will be removed in the next versions of Object Manager.

Home Manager application allows to access image of IP camera via any interface. There is no limit of

number of operated cameras, however, image of each of them will be displayed separately.

Note! Home Manager application displays correctly images of cameras supporting RTSP protocol

and h264 codec in MPEG standard.

A. Adding camera component

To add camera image to the interface, drag the "camera" object available on the objects list to the

workspace:

af://n1888
af://n1896

Then, enter address of the camera which image will be displayed as a source of the object. Added

camera needs to be pre-configured to enable opening images from it using RTSP protocol.

After sending created interface, image from the camera will be displayed on the screen of the mobile

device after clicking added object.

B. Adding camera panel

It is possible to add an image from the camera to the interface using the Camera panel. To do this, drag

it to the blank page of the interface.

Then - as the source for the added object, it is necessary to enter the address of the camera whose

image is to be displayed. The added camera must be set up in advance in such a way that it can be

previewed via the RTSP protocol.

After sending the created interface, the image from the camera will be displayed on the screen of the

mobile device after pressing the page with the added panel Camera.

8. Remote access of the mobile application to the
system

The Grenton system gives you the freedom to control your home from anywhere in the world. Sitting at

work, or being on a business trip, we can easily control the state of our investment and manage its

functions in a very simple way.

To be able to remotely access the Grenton system, it should meet the following requirements:

the Grenton system must be fully configured;

created mobile application interfaces must be sent to mobile devices from which remote access is

to be performed;

the internet service provider must provide access to a static external IP address;

the router / access point must be able to route ports.

af://n1902
af://n1908

8.1. System configuration

The manual has been prepared for a system in which the central unit is connected to a router visible

through an external static IP address.

Before configuring remote access, you must:

make sure that the central unit has been connected to the router of the local network and that the

address of the central unit has been sent from the router's address pool;

check the address of the central unit assigned by the local area router (for this purpose, double-

click on the central unit's icon);

in the newly opened window, read the information from the box marked below:

For the analyzed case, the central unit's address is: 192.168.1.2. This address will be used to perform

port routing.

af://n1921

8.2. Port routing setting on the local network router

Note! The port routing settings for each router may vary! The general procedure is presented

below.

In order to set up port forwarding it is necessary to:

access to the settings of the local network router - to do this, it is necessary to connect to the local

network in which the central unit is located;

opening an internet browser and entering the IP address of the local network router in the address

field (in order to enter its settings) - the default address is usually found at its bottom;

logging in using login data - the default login and password are most often in the form of a sticker

on the bottom of the local network router (the default router data can also be found in dedicated

internet tools);

Note! If the entered IP address or login details are incorrect, it means that they have been

changed by the network administrator. To access the router's settings, please contact him.

find the position regarding port forwarding in the router's settings (Port Forwarding or similar);

execution of external port forwarding 1234 to internal port 1234 of the local address of the

central unit using the UDP protocol - an example configuration is provided below:

save router settings - in some cases it may be necessary to restart the device.

Note! Make sure external communication is not blocked by internal router settings.

af://n1936

8.3. Configuration of the Home Manager mobile application

When creating a configuration, you must:

start the Home Manager mobile application;

make sure that the interface has been uploaded to the mobile application, by means of which the

remote access functionality will be implemented;

go to the main screen of the mobile application and enter Settings (by clicking on the gear icon in

the lower left corner of the screen):

in the settings, click Remote access, Set addresses:

af://n1962

select the one for which remote access is to be configured from the list of available interfaces;

then a window will be displayed with the current network configuration of the system with the

address information:

local (local IP address of the central unit);

remote (external IP address of the network to which the central unit is connected together

with the port number assigned to it):

Note! If the specified remote address differs from the actual external IP address, change should

be made by clicking on the address window. In the newly opened window, it is necessary to make

changes according to the actual IP address of the device. To accept changes, press OK.

8.4. Starting remote access

The Grenton Home Manager mobile application automatically switches from local communication to

remote communication. For remote access to be possible, the mobile device must meet the following

conditions:

remote access must be configured correctly;

the device must be connected to a non-local internet network (other than the one to which the

system is connected) or it must have cellular network data enabled (internet in the phone).

In order to start remote communication with the system, open the interface for which the remote access

configuration was performed by selecting it from the list of interfaces:

af://n1992

If the interface was set as the default one, click the button:

Firstly, the Home Manager application will attempt to establish a connection via the local network. When

the lack of this possibility is detected, the remote communication will be switched over.

Name Description

Time Countdown time (in ms)

Mode Timer work mode: 0 - countdown, 1 - interval

State Current timer work status: 0 - stopped, 1 - counting, 2 - paused

Value Time left until onTimer event occurs (in ms)

IX. CLU Objects

1. Timers

Timers are virtual objects created within specific CLU. Object Manager enables creation of maximum 64

timers. Timers can be used wherever there is need for method invocation after specific time or cyclical

method invocation.

The timer itself is also an OM object and as any other object, it has its own features, methods, events,

and initial values. Timer can work in two modes:

Countdown - after starting, counts down set time. When countdown reaches zero, method

connected to OnTimer event is invoked, while the timer stops and remained stopped until next

usage of start method.

Interval - cyclical timer, it counts down set time after starting. When countdown reaches zero,

method connected to OnTimer event is invoked, while the timer starts the countdown again. The

situation repeats until stopping timer using Stop method.

A. Timers creation

To create timer in a specific CLU, mark it, then select add CLU object from the upper menu.

After clicking the icon, a list of available objects will appear. Find and select Timer option. After

selecting the timer, click OK , then name the new timer, set its time [in ms] and work mode [countdown

or interval]. Selected time will be simultaneously time setting in initial conditions. Created timer will

appear on the objects list of the selected CLU.

Created timer is also a CLU object, and as other physical objects, it is controlled by objects configurator

look up V.4.1.

B. Configuration parameters of timer

FEATURES

METHODS

af://n2004
af://n2005
af://n2012
af://n2016

Name Description

SetTime Sets time of the timer (in ms)

SetMode Sets work mode

Start Starts the timer

Stop Stops the timer

Pause Pauses the timer

Name Description

OnTimer The event is called when the timer is counted

OnStart The event is triggered when the timer starts

OnStop Event triggered when the timer stops

OnPause The event is called when the timer is paused

EVENTS

2. Calendar

Calendars, just as timers, are virtual objects created by the user in CLU. It is possible to create up to 64

calendars on one CLU. One calendar created in CLU is a one rule followed on a specific day and time or in

daily, monthly, or hourly intervals, with accuracy down to a minute. The rules can be created using

graphic interface, or using syntax compliant with CRON rules of the LINUX system.

A. Calendar creation

To create a calendar, mark CLU in which you want to create it, then launch Add CLU object from the

upper menu.

In the window that opens, select Calendar . After clicking OK , enter the name for the calendar you

are creating. The Object Manager will display the properties window of the created object.

Note! The calendar after creating and sending the configuration to the CLU automatically

becomes active - to stop the calendar, call the STOP method.

B. Calendar features

Window calendar features contains four tabs:

af://n2071
af://n2073
af://n2079

Control – contains calendar methods;

Events – contains calendar events;

Built-in features – contains list of calendar features;

Rule – contains interface enabling defining rules easily.

C. Calendar rules

There are two ways of entering rules for the calendar:

Through the graphic interface using Rule tab;

By entering CRON rule using SetRule method in the control tab or Rule as a Built-in feature.

D. Calendar rule creation through graphic interface

There is graphic interface in the Rule tab, using which the user can easly set rules parameters of the

calendar.

Note! After entering rule parameters through graphic interface, Rule value in the Built-in

features is entered automatically according to the selected criteria.

af://n2091
af://n2098

Name Description

Rule
Calendar rule in CRON format (or "ERROR" format in the case of entering

wrong rule)

SinceLastRun Time (in minutes) since the condition of the rule was last met

ToNextRun Time (in minutes) until next calendar action invocation

State Calendar work status: 1 (active) or 0 (not active)

There are two section there, in which the user selects rule parameters:

Time – contains two boxes: the first, in which the hour (or hours range) is entered; the second, in

which the minute (or minutes range) is entered. Values in the boxes should be entered according to

the CRON rule.

Criteria – contains remaining parameters of the rule. The user makes selection by marking

appropriate boxes.

E. Calendar rules creation in accordance with CRON format

Calendar rules are created by entering them in the Rule field in calendar built-in features, or using

SetRule method. Detailed information on this process can be found in CRON calendar documentation.

F. Configuration parameters of Calendar

FEATURES

METHODS

af://n2109
af://n2111

Name Description

Start Switching to active state (State =1)

Stop Switching to paused state (State =0)

SetRule Setting calendar rule

CancelNext Cancelling invocation of selected number of the nearest calendar actions

Name Description

OnCalendar Events since calendar action invocation

OnStart Events since restarting calendar work

OnStop Events since stopping calendar work

OnCancel Events since cancelling the nearest actions

EVENTS

3. Schedule

Schedule is a virtual object used for setting value of any feature throughout a week. The values are set

using graphic interface for each day and each hour with 15 minutes, 30 minutes, or 1 hour frequency.

Up to 64 schedules can be created in one CLU.

Note! After schedule's creation (after sending new configuration to CLU) it becomes automatically

active. To stop schedule work, invoke Stop method.

A. Schedule creation

To create a schedule, mark CLU within which you wish to create it, then launch Add CLU object from

the upper menu.

In the opened selection window, it is necessary to find and select the Scheduler object. After

entering the name, the schedule properties window will open on the screen. In this window there are

four tabs:

Control - includes schedule methods;

Events - contains schedule events;

Built-in features - contains a list of schedule features;

Scheduler - includes a graphical interface allowing simple formulation of values for the entire

scope of the schedule.

af://n2163
af://n2167

B. Setting values for the schedule

In the schedule tab of properties window there is graphical interface, thank to which you can define

values for specific output.

The schedule allows to enter values for 7 days (within one week) with 15-minutes frequency. You can

set values for every day individually or for several days at once. Day of which the values are currently

being set is discerned by black mark on the right of its name. Switching to another day happens after

clicking its name.

To simultaneously enter values for several days, mark days for which you will set values (by clicking

marker), then begin entering the values. You can add values directly on the chart using mouse, or enter

them in the values window which appears after clicking a specific hour.

af://n2180

C. Setting output value using schedule

Changing value in a set schedule triggers OnHarmonogram event.

To copy values set in the schedule to the values of selected output, add SetValue method of the

selected output to the OnHarmonogram event. Then, select Schedule as parameter of the method.

Every 15 minutes Value of this output will be set according to the value saved in the schedule.

Note! Remember to make sure that the range of values set in the schedule is the same as the

range in which the selected output can be controlled. You can change schedule values range using

SetMax and SetMin methods, and by changing built-in Min and Max features.

D. Configuration parameters of schedule

FEATURES

af://n2185
af://n2191

Name Description

Data String defining value changes schedule (see: Data format)

State Schedule work status: 1 (active) or 0 (not active)

Value Output value, changed every 15 minutes according to the schedule

Min Minimum value for setting graphic interface value range

Max Maximum value for setting graphic interface value range

Name Description

Start Switching to active state (State =1)

Stop Switching to paused state (State =0)

SetData Setting weekly schedule

Name Description

OnHarmonogram Events since change of Value feature

OnStart Events since restarting work

OnStop Events since stopping work

METHODS

EVENTS

4. PID controller

CLU enables creation of up to 64 PID controllers (proportional-integratingdifferentiating), used to

maintain set output value on the constant level depending on the input value.

The most popular way of using PID controller is temperature control on the basis of information

gathered from temperature sensor.

Note! PID controller working in AUTO mode after starting work (after first switching on or after

CLU reset) performs object calibration procedure, during which the temperature of the controlled

object may increase for several percent above the set temperature. Thus, PID controllers are not

recommended to use with objects of high thermal inertia, e.g. to control water temperature in an

aquarium.

A. PID controller creation

To create PID controller mark CLU within which you want to create it, then launch Add CLU object

from the upper menu

af://n2240
af://n2244

In the open window find and select PIDcontroler , then name it. Windows of features of the newly

created controller will appear on the screen. It contains three tabs

Control – contains controller methods;

Events – contains controller events;

Built-in features – contains list of controller features.

B. Control using the controller

To control output values with controller, you must properly connect it to the input and output objects. To

do that, follow these steps in order:

Add the source value to the Source method, eg the temperature sensor's Value feature (in the

temperature sensor to the OnChange event, select the PID controller, and assign the value from

the temperature sensor to the Source method as a parameter).

Associate the output module with the corresponding PID object events. To do this, assign control

methods to the object to the OnOutOn and OnOutOff events.

In the case of temperature control, the OutOutOn event in the controller should be assigned the

SwitchOn method of the output from which the heat source is controlled (to which the radiator,

furnace, radiator control valve is connected), whereas the OutOutOff event should be assigned a

SwitchOff of this output.

af://n2255

Alternatively - if the output module's interface allows it, only the OnChange event can be used. To do

this, assign the OnChange method in the controller to the SetValue (Value) method of the output

controlling the heat source (the output must have such a method), and then indicate the ControlOut

feature of the PID controller.

In such configuration, when relay output value in the controller changes, it will be reconnected to the

output value.

C. Work modes

The controller has two possible work modes:

Automatic control (Auto) Control in the mode is based on automatic control algorithm, in which

all the vital parameters are adjusted automatically on the basis of received data.

Manual control (Normal) In this mode, the user can set all the vital parameters used by PID

controller with manual choice of set points (Kp, Ki, Kd parameters). The Normal mode is intended

for advanced users who know the tuning principles of PID controllers.

To set controller in a specific work mode, change value of Mode feature to:

Normal – for manual mode;

Auto – for automatic mode.

Depending on the selected work mode, option of setting values of particulr features changes - e.g.

parameters A and B are used only for the Auto algorithm, while parameters Kp, Ki, and Kd are used

only in Normal mode.

Note! Parameters A and B can't be changed during control since they are continuously updated by

the algorithm.

af://n2269

Name Description

ControlOut
Value of relay output (binary, switched in cycle defined by SwitchTime and

DutyCycle)

State Controller work status: 1 (active) or 0 (not active)

SetPoint Controller input – target value

Kp Strengthening of PID controller proportional element

Ki Strengthening of PID controller integrating element

Kd Strengthening of PID controller differentiating element

SwitchTime* Time of switching

Alpha Parameter α in Kaczmarz algorithm (protection against denominator zeroing)

Gamma Parametr γ in Kaczmarz algorithm (dynamics of a and b estimation changes)

Mode Controller work mode: 1 – "manual" PID or 2 - automatic Kaczmarz algorithm

A* Parameter a in Kaczmarz algorithm

B* Parameter b in Kaczmarz algorithm

D. PID Controller operational design

The controller controls ControlOut feature by setting its value to 1 or 0 with frequency set by

SwitchTime feature through duty cycle change.

Before starting control, the controller carries out procedure of controlled object inertia estimation and

sets acceptable range of SwitchTime values on its basis. After finishing this stage, SwitchTime

feature value is set automatically in the middle of the selected range.

Note! If the control is run automatically, manual change of Switchtime value is not possible.

E. PID Controller configuration parameters

FEATURES

Setting these parameters is not possible in all of controller work modes.

METHODS

af://n2285
af://n2289

Name Description

Source Entering new value of input for driver (feedback loop)

Start Switching to active mode (State =1)

Stop Stopping work (State =0)

SetPoint Setting the target value of the regulator

SetKp Setting the proportional gain value

SetKi Setting the gain value of the integrator

SetKd Setting the gain value of the differentiator

SetSwitchTime Setting the switching time

SetAlpha
Setting the Alpha parameter in the Kaczmarz algorithm, protecting against

zeroing the denominator

SetGamma Setting the Gamma parameter in the Kaczmarz algorithm

SetMode
Setting the controller's operating mode - manual PID (Normal PID) or

automatic algorithm of Kaczmarz (Auto-Kaczmarz)

SetA Setting parameter a in the Kaczmarz algorithm

SetB Setting parameter b in the Kaczmarz algorithm

Name Description

OnChange An event dispatched when the value of the Control Out

OnStart Events since change of ControlOut feature value

OnStop Events since stopping work

OnOutOn
An event dispatched when the value of the ControlOut property is switched to

1

OnOutOff
An event dispatched when the value of the ControlOut property is changed to

0

EVENTS

5. Thermostat

A thermostat is a virtual object that is used to create a heating or cooling control configuration

depending on the given temperature sensor and the heating or cooling schedule introduced in the

weekly schedule. Temperature values are set using the graphical interface for each day and hour with a

15-minute, 30-minute or hour resolution.

You can create up to 64 thermostats in one CLU.

Note! After creating the thermostat (after sending a new configuration to the CLU), it becomes

active automatically. To stop his work, call the Stop method.

af://n2398

A. Thermostat creation

In order to create a thermostat, select the CLU, under which it is to be placed, and then from the top

menu run Add object CLU .

In the opened selection window, search for and select Thermostat . After entering the name, entering

the source (which should be the temperature sensor responsible for a given heating zone) and selecting

the receiver (which is the output to which the device responsible for a given heating zone is connected -

eg radiator head, floor heating) for the created object, on the screen will open the schedule properties

window. In this window there are four tabs:

Control - includes schedule methods;

Events - contains schedule events;

Built-in features - contains a list of schedule features;

Scheduler - includes a graphical interface that allows you to easily formulate values for the entire

scope of the schedule.

B. Formulating values for a thermostat

In the tab Scheduler (in the properties window) there is a graphical interface, thanks to which it is

possible to set values.

af://n2402
af://n2415

The schedule allows you to enter values for 7 days (within one week) with a 15-minute resolution. You

can set values for each day separately or for several days at the same time. The day for which the

values are currently entered is marked with a black marker on the left side of the name. Switching to

another day follows after clicking on its name.

To enter values for several days at the same time, click on the tags next to the names for which the

values will be set. The values can be set directly on the graph using the mouse or manually enter values

in the window, which opens after clicking on the selected hour.

The thermostat responds to the schedule when it is in the Auto mode. The choice of the operating

mode is made by means of the application or by the methods of the object.

C. Configuration parameters of the Thermostat object

FEATURES

af://n2421

Name Description

Source Thermostat input, connection to a temperature sensor

Control Thermostat output, connection with the actuator

OutputType
Determination of the output type (-1 - autodetection, 0 - digital output,

1 - analog output)

PointValue The value of the temperature set manually

HolidayModeValue The temperature value for the holiday mode

Hysteresis
Hysteresis value - defining the limits of thermostat activation and

deactivation

State Operation status (1 - active thermostat, 0 - inactive)

ControlDirection
Working direction (0 - normal mode (warming up), 1 - reverse mode

(cooling))

Mode

Operating mode (0 - manual mode (using PointValue), 1 - holiday

mode (HolidayModeValue), 2 - automatic mode (AutoMode value

from the Schedule), 3 - heating mode (HeatUp value))

Data A string that defines the schedule for changing values

Min The lower value of the scope of the built-in schedule

Max The upper value of the scope of the built-in schedule

TargetTemp The current value of the target temperature

ControlOutValue The value assigned to the heating control output

METHODS

Name Description

Start Switching thermostat to active state (State = 1)

Stop Switching the thermostat to an inactive state (State = 0)

IncreaseDegree Increase PointValue by 1 ° C

DecreaseDegree Decrease PointValue by 1 ° C

HeatUp Increasing PointValue by a given value at a specified time

HolidayModeStart Starting holiday mode

HolidayModeStop Stopping the holiday mode

AutoModeStart
Starting the AutoMode mode (downloading temperature from the

schedule)

AutoModeStop Stop the AutoMode mode

SetData Setting the weekly schedule

SetOutputType
Output type setting (Auto - auto detection, Digital - digital

output, Analog - analog output)

SetPointValue Setting the manually set temperature

SetHolidayModeValue Setting the temperature value for the holiday mode

SetHysteresis Setting the hysteresis value

SetControlDirection
Setting the working direction (0 - normal mode (warming up), 1 -

reverse mode (cooling))

Name Description

OnChange
An event generated when the value of the PointValue property is

changed

OnStart The event is generated when the thermostat is restarted

OnStop Event generated when the thermostat stops working

OnOutOn
An event dispatched when the value of OutValue is set to a value

greater than zero

OnOutOff
An event that is dispatched when the value of OutValue is less than

zero

OnHolidayModeOn An event generated when starting holiday mode

OnHolidayModeOff An event generated when the holiday mode is turned off

EVENTS

6. Push

af://n2545

Name Description

Message Notification content

Title Notification title

LastSendTime The time when the last notification was sent

Interval Interval between successive notifications (in seconds)

Name Description

SetMessage Setting the notification content

ClearMessage Clearing the notification content

SetTitle Setting the notification title

ClearTitle Clearing the notification title

Send Sending notification to device

SetInterval Setting the interval between successive notifications (in seconds)

Push notifications are virtual objects created by the user in the CLU. This object enables sending

notifications to the device with MyGrenton app installed. It is possible to create up to 64 calendars on

one CLU.

Note! Push notifications are available for Object Manager version v1.3.3 (or higher) and

myGrenton app (Android) version v1.1.9 (or higher) or myGrenton app (iOS) version v1.3.3 (or

higher). It is necessary to enable the cloud connection in the CLU (To do this, set the parameter

UseCloud == true and then send the configuration to the CLU. Correct connection to the cloud

will be signaled by the cloudConnection == true parameter)

A. Push creation

To create Push notification, mark the CLU within which you want to create it, then launch Add CLU

object from the upper menu.

In the open window find and select Push , then name it. Windows of features of the newly created

Push object will appear on the screen. It contains three tabs

Control – contains push methods;

Events – contains push events;

Built-in features – contains list of push features.

B. Configuration parameters of the Push object

FEATURES

METHODS

af://n2549
af://n2560

Name Description

OnSend An event generated when the message is sent

OnOverflow An event generated when the queue overflows

EVENTS

C. MyGrenton configuration

To add a notification to the myGrenton interface, click the MyGrenton interface settings link in

the toolbar:

The window with interface settings will appear:

In the Push notification objects , select the notifications you want to activate, then send the

interface to your mobile device look up XVII.5..

af://n2612

D. How push notifications work

After calling the Send method, a push notification appears on the device screen.

Sending more notifications from one Push object results in adding them to the queue and appearing on

the device at intervals defined by the Interval feature. QUEUE PROPERTIES

There can be a maximum of 10 messages in the queue at one time;

If more than 10 notifications appear in the queue, the OnOverflow event will be generated;

If more than 10 notifications appear in the queue, only the last 10 notifications will be sent to the

device.

Note! Messages sent from different push objects will appear on the device simultaneously.

7. Presence Sensor

Presence sensor is a virtual object created within a given CLU. Object Manager allows you to create up

to 64 objects. The presence detector can be used wherever it is necessary to call the method after a

specified time, as well as to count the time from the last call (e.g. after motion detection).

Note! To fully use the described functionality of the Presence Sensor object, you must have a

CLUZ with firmware 5.10.01 or higher.

af://n2618
af://n2631

Name Description

Timeout
Time (in seconds) from last movement detection. When this time

elapses PresenceDetected sets on 0

State

Current state of presence sensor:

1 - On

0 - Off

PresenceDetected Movement detection state

TimeFromLastPresence

The time since the last motion detection (from the sensor or

switching on the light from the button). Reset after calling:

- DetectPresence() - regardless of Locked, DetectionDelay

- SwitchLocked() when changing Locked to 1

- SetLocked(On)

In state mode after calling DetectPresence(),

TimeFromLastPresence = 0, until UndetectPresence() is called

DetectionDelay Time to ignore DetectPresence after changing Locked On->Off

Locked

Presence blocked status:

0 - reacting to DetectPresence

1 - maintain PresenceDetected as 1

Mode

Operation mode depending on the type of motion sensor used:

0 - impulse

1 - state

A. Presence sensor creation

In order to create a presence detector, select the CLU within which it is to be included, and then run Add

CLU object from the top menu.

After clicking the icon, a selection window with a list of available objects appears, where you need to

find and select the PresenceSenor object. After selecting, pressing OK , it is necessary to give a

name to the new presence sensor. The created sensor will appear on the list of objects of the selected

CLU.

B. Operation mode of presence sensor

The presensce sensor can work in two modes depending on the motion sensor used:

Impulse input - a mode, in which the PresenceDetected = 1 is maintained for a Timeout

period - after this time, the PresenceDetected change to 0;

State input - a mode, in which after the detection of movement by the sensor

PresenceDetected = 1 is maintained until UndetectPresence method is started - after its

activation the high state of the PresenceDetected is maintained during the Timeout .

C. Presence sensor configuration parameters

FEATURES

af://n2635
af://n2639
af://n2646

Name Description

Start Start a presence sensor

Stop Stop a presence sensor

DetectPresence
Method called while presence detection. Sets PresenceDetected value

to 1 and resets TimeFromLastPresence timer

UndetectPresence
Used in state mode (Mode = 1). Ends keeping the PresenceDetected

parameter (after Timeout)

SwitchLocked

Changes the value of the Locked parameter to the opposite. Cases:

- changing Locked from 0 to 1 - setting to 1 and blocking

PresenceDetected, triggering the OnSwitchOn event (if

PresenceDetected = 0 before), resetting TimeFromLastPresence

- changing Locked from 1 to 0 - setting to 0 and unlocking

PresenceDetected, triggering the OnSwitchOff event

SetLocked

Sets the value of the Locked parameter. Cases:

- changing Locked from 0 to 1 - setting to 1 and blocking

PresenceDetected, triggering the OnSwitchOn event (if

PresenceDetected = 0 before), resetting TimeFromLastPresence

- changing Locked from 1 to 0 - setting to 0 and unlocking

PresenceDetected, triggering the OnSwitchOff event

- SetLocked(On) if Locked = 1 - resets TimeFromLastPresence

- SetLocked(Off) if Locked = 0 - no reaction

SetTimeout Set a Timeout parameter (in seconds)

SetDetectionDelay Sets the DetectionDelay parameter (in seconds)

SetMode Sets the Mode parameter

Name Description

OnStart A event called when sensor starts

OnStop A event called when sensor stops

OnSwitchOn
A event called if a presence detected (change of PresenceDetected parameter

value from 0 to 1)

OnSwitchOff
A event called when a timer timeouts (change of PresenceDetected parameter

value from 1 to 0)

METHODS

EVENTS

8. Sunrise and Sunset Calendar

The sunrise and sunset calendar is a virtual object created within a given CLU. Object Manager allows

you to create up to 64 objects. The calendar can be used when certain actions in the system are

performed depending on the time of day (sunrise / sunset).

af://n2722

Note! To fully use the described functionality of the Sunrise Sunset Calendar object, you must

have a CLUZ with firmware 5.09.02 or higher.

A. Create a calendar

In order to create a sunrise and sunset calendar, select the CLU within which it is to be included, and

then, from the top menu, start Add CLU object .

After clicking the icon, a selection window with a list of available objects appears, where you need to

find and select the SunriseSunsetCalendar object. After selecting, pressing OK , it is necessary to

name the new calendar. The created calendar will appear on the list of objects of the selected CLU.

B. Calendar configuration parameters

FEATURES

af://n2726
af://n2730

Name Description

Longitude Longitude in decimal degrees (DD), range -180 to 180

Latitude Latitude in decimal degrees (DD), range -90 to 90

State Current state of the sunrise and sunset calendar: 1 - On, 0 - Off

SunriseUTC
UTC sunrise time for a selected location (± 5 minutes)

N\A - Unable to calculate sunrise time

SunsetUTC
UTC sunset time for a selected location (± 5 minutes)

N\A - Unable to calculate sunset time

SunriseLocal
Sunrise local time for a selected location (± 5 minutes)

N\A - Unable to calculate sunrise time for a selected location

SunsetLocal
Sunset local time for a selected location (± 5 minutes)

N\A - Unable to calculate sunset time for a selected location

SunriseUTCTimestamp
UTC sunrise time for a selected location (± 300 seconds)

-1 - Unable to calculate sunrise time

SunsetUTCTimestamp
UTC sunset time for a selected location (± 300 seconds)

-1 - Unable to calculate sunset time

SunriseLocalTimestamp
Sunrise local time for a selected location (± 300 seconds)

-1 - Unable to calculate sunrise time for a selected location

SunsetLocalTimestamp
Sunset local time for a selected location (± 300 seconds)

-1 - Unable to calculate sunset time for a selected location"

IsDayNow

Determines the current part of the day based on local

sunrise/sunset (± 5 minutes) - SunriseOffset/SunsetOffset offsets

are not considered:

0 - nighttime,

1 - daytime,

-1 - Unable to calculate for a selected location

SunriseOffset Offset of the OnSunrise event (in minutes), range -1439 to 1439

SunsetOffset Offset of the OnSunset event (in minutes), range -1439 to 1439

NextSunrise Time left until sunrise (in minutes)

NextSunset Time left until sunset (in minutes)

METHODS

Name Description

Start Starts sunrise and sunset calendar

Stop Stops sunrise and sunset calendar

SetLongitude Set a longitude in decimal degrees (DD), range -180 to 180

SetLatitude Set a latitude in decimal degrees (DD), range -90 to 90

SetSunriseOffset Set the offset of the OnSunrise event, range -1439 to 1439

SetSunsetOffset Set the offset of the OnSunset event, range -1439 to 1439

Name Description

OnStart A event called when calendar starts

OnStop A event called when calendar stops

OnSunrise
A event called when the sun rises taking into account the offset

property

OnSunset
A event called when the sun sets taking into account the offset

property

OnSunriseSunsetChange
A event called when the sun rises or sets taking into account the

offset property

OnDay
A event called when IsDayNow changes from 0 (nighttime) to 1

(daytime)

OnNight
A event called when IsDayNow changes from 1 (daytime) to 0

(nighttime)

EVENTS

9. Event Scheduler

The event scheduler is a virtual object created within a given CLU. It is used to trigger a given event for

a given hour and day of the week. In order to define the time and day of the week on which the event is

to be executed, an appropriate rule should be added using the AddRule method. Rules are created

using the syntax compliant with the CRON rules of the LINUX system.

Note! To fully use the described functionality of the Event Scheduler, you must have a CLUZ with

firmware 5.09.02 or higher.

To configure and manage rules it is recommended to use the EVENT_SCHEDULER widget from the level

of myGrenton application - see section XVIII.3.18.

af://n2833

Name Description

RuleList

List of all rules in the format {{id, rule_state, "crone"},{id,

rule_state, "crone"},...}

rule_state: 0 - rule disabled, 1 - rule enabled

CurrentRule

Rule from the list that is responsible for the current event {id,

rule_state, "crone"}

Returns a run rule for 1 minute, then "N\A"

rule_state : 0 - rule disabled, 1 - rule enabled

NextRule

Rule from the list for the next event in {id, rule_state,

"crone"} format

rule_state : 0 - rule disabled, 1 - rule enabled

RuleCount Number of rules added

RuleAvailableCount The number of rules that can be added to an existing list (free space)

State Current state of event scheduler

A. Create a event scheduler

In order to create a event scheduler, select the CLU within which it is to be included, and then, from the

top menu, start Add CLU object .

After clicking the icon, a selection window with a list of available objects appears, where you need to

find and select the EventScheduler object. After selecting, pressing OK , it is necessary to name the

new event scheduler. The created event scheduler will appear on the list of objects of the selected CLU.

B. Event scheduler rules

There are two ways of entering rules for the event scheduler:

Through the myGrenton application and the EVENT_SCHEDULER widget - a detailed description

can be found in chapter see section XVIII.3.18.

By entering CRON rule using AddRule method in the control tab - detailed information on this

process can be found in CRON calendar documentation.

Note! The Event Scheduler virtual object uses only the three parts of the CRON record "minute

hour day month week_day". The day and month values are ignored, so you must enter * in

place of these values. The target CRON syntax looks like this: minute hour * * week_day

C. Event scheduler configuration parameters

FEATURES

METHODS

af://n2838
af://n2842
af://n2851

Name Description

Start Start Event Scheduler

Stop Stop EventScheduler

AddRule
Adds a rule to the list. Provide a crone rule minute hour * * day_of_week .

Returns the id number of the assigned rule. When return 0 - error

DeleteRule Removes the rule with the given id from the list. Returns 0 - ok, 1 - error

GetRule
Returns the rule in the format {id, rule_state, "crone"} for the given

rule_state : 0 - rule disabled, 1 - rule enabled

EnableRule Change state of rule to activated. Returns 0 - ok, 1 - error

DisableRule Change state of rule to deactivated. Returns 0 - ok, 1 - error

GetRules

List of all rules in the format {{id, rule_state, "crone"},{id,

rule_state, "crone"},...}

rule_state : 0 - rule disabled, 1 - rule enabled

GetNextRule Rule from the list for the next event in {id, "crone"} format

Name Description

OnStart A event called when Event Scheduler starts

OnStop A event called when Event Scheduler stops

OnEvent
Target event triggered on the basis of the set rules and the current time of

the device

OnRuleAdd The event is raised when adding a rule to the list

OnRuleDelete The event is raised when removing a rule from the list

EVENTS

X. Media measurement

1. Virtual media measurement

1.1. Launching media measurement on the Object Manager

page

The Object Manager allows you to perform a media measurement, which allows the estimated

presentation of the energy consumed (based on the time the device is turned on and the receiver power

specified in the configuration). The media measurement configuration takes place in OM and it must be

run for each input and output separately - so that the CLU collects data on energy consumption. Media

measurement is recorded every 15 minutes, starting the countdown from the full hour - based on the

CLU clock (CLU feature -> TIME).

Note! Media measurement is available for Object Manager version 1.2.0.180202 and higher, and

for CLU with firmware 04.07.29-1802 and higher.

Media measurement can be run for modules:

Input (Digital IN) - in the continuous mode (counting the working time) or pulse (counting the

pulses appearing at the binary input):

Output (Relay, Led RGB, Dimmer) - in continuous mode (counting working time):

af://n2928
af://n2929
af://n2930

Note! The media measurement of the above-mentioned modules applies to modules for DIN rail

and flush-mounted Tf-bus! The measurement setting is not available for Z-Wave modules!

A. Creating a configuration

To create a configuration:

Double click on the selected module from the list of modules in the main view of the program (this

applies to the above-mentioned modules for media measurement support);

Go to the tab Embedded features;

Change the selection of the StatisticState feature to: Continuous or Pulse (for binary

inputs of the Digital In module);

The Load item will appear below - to its initial value, enter the active power input of the device

connected to the input or output in watts per hour (eg 60) - CLU will recalculate the given value

continuously (multiplying by time in hours):

Confirm with OK;

Add media measurement settings for subsequent modules - repeat the above steps;

Send the configuration to the CLU.

af://n2947

B. Read media measurement in the Object Manager

In order to read the media measurement in the Object Manager program:

Wait at least for the first scheduled measurement recording by the CLU (up to XX.00 or XX.15 or

XX.30 or XX.45 - where XX is the hour);

Select Tools -> Download file with measurements;

A window will be displayed with information about downloaded records:

Click OK;

The Object Manager will then synchronize the downloaded data with the cloud;

After the synchronization is completed, press OK:

Note! In case of a synchronization error, please contact Support!

In order to make sure that the media measurement has been registered, double-click on the

selected module for which the media measurement has been run;

Then go to the Statistics tab:

You can choose the type of graph displayed: bar or line - in both cases, the total amount of

energy consumed (in watts) for each hour appears on the chart;

You can also select the interval of the media measurement viewed: day, month, year or

manually select the date range - depending on the selected interval, the corresponding graph

will be displayed.

af://n2968

C. Configure the media measurement for the Home Manager application

interface

Note! Support for Visual Builder functionality has been ended. The Home Manager interface

creator will be removed in the next versions of Object Manager.

The media measurement configuration for the application interface must follow the following diagram:

Add a new application interface:

Enter the name of the application being created;

Set resolution, skin, add at least one page, click OK;

From the panel tray, drag the panel Statistics to the editable area of the application interface;

In the Source tab, select check boxes for modules whose media measurement graphs are to be

displayed in the statistics panel in the application:

af://n3000

Click OK;

Send the interface to the mobile device- look up VIII.4.7..

1.2. Using media measurement on the Home Manager

application side

Note! Media measurement is available for Home Manager version 1.1.110 or higher.

To properly use the media measurement in the mobile application, first take measurements from the

CLU and - if necessary - synchronize the measurements with the cloud.

A. Taking measurements

Enter the application settings from the main menu (gear icon).

Select from the list of settings: Download measurements from the CLU.

After a moment, the following message will be displayed: Success for CLU: X, Y 6 .

Launch the application interface - the measurements should be updated and displayed on the

chart.

B. Media panel view options

Change of displayed data of specific I / O - after clicking on the modules listed, the upper bar of the

media measurement panel displays a window of available modules added to the panel, which are

selected by default - their unchecking results in the lack of showing measured values for specific I

/ O:

af://n3024
af://n3029
af://n3041

In the same window where the modules are visible, it is possible to change the graph view - the

default is a line graph, but you can also select a bar, pie or ranking;

Change of the time range of the displayed waveforms - this can be done using the "daily" buttons

(summing measurements for each hour of the day), "monthly" (adding up values for each day in the

month) and "annual" (adding up the measurements for each month separately);

It is also possible to choose your own time range - after clicking on a given hour, the window for

selecting the start and end day is displayed:

C. Synchronization and downloading of measurements

Taking measurements from the CLU, which was done before, took place at the local connection

with the CLU. For the measurements to be displayed during remote access, synchronize them with

the cloud;

In order to synchronize the measurements with the cloud, enter the Main menu of the Home

Manager application - in the settings and at the bottom select: Synchronize measurements with

the cloud.

2. Real media measurement

Note! Real media measurement is only available for modules of the Grenton 2.0 series: GRENTON

RELAY 2HP (DIN), GRENTON RELAY 4HP (DIN), GRENTON ROLLER SHUTTER (DIN), GRENTON

ROLLER SHUTTER (Flush), GRENTON I/O MODULE 2/2(Flush).

af://n3057
af://n3066

2.1. Real media measurement settings in Object Manager

Object Manager allows you to carry out media measurement, which allows real presentation of

consumed energy (based on the VoltageValue and VoltageType parameters of the device). The

configuration of media measurement is done in OM and should be parameterized for each output

separately. In order for the media to be measured correctly, it is necessary to determine the electrical

parameters of the network to which the entire system is connected. For this purpose, in the embedded

features of the CLU module, define the frequency (VolatageFrequency) and the rated voltage

(DefaultVoltageValue) of the network.

Media measurement is recorded in real time. Power features are expressed in watts for relay output

modules and LoadCurrent are expressed in milliamperes for blind drive control modules.

The VoltageType feature takes the values:

af://n3069

For DOUT objects: 0-AC, 1-DC, 2-Signal

For ROLLER SHUTTER objects: 0-AC, 1-DC

XI. CLU service functions

1. Restoring factory settings CLU - Hard Reset

Activating the Hard Reset CLU function results in:

Removal of the saved configuration;

Formatting the flash memory partition;

Removal of all created LUA objects;

Clearing all data of the Z-Wave controller;

Removal of information about connected Z-Wave modules.

In order to restore the factory settings of the CLU with the Hard Reset function, perform the following

steps (in accordance with the order given):

Disconnect power from the CLU module;

Press and hold the Link button on the module;

Connect the power supply to the CLU module;

Keep the Link button depressed for at least 10 seconds - both LEDs on the CLU will be

permanently illuminated;

After 10 seconds, release the Link button - the correct execution of the reset will be confirmed by

a blink of both LEDs 5 times.

Note! If Z-Wave modules were added to the CLU before starting the Hard Reset function, after

performing the reset it will be necessary to perform the procedure of deleting and re-adding each

Z-Wave module!

2. System diagnostics - Save the diagnostic package

Diagnostic package is used for CLU diagnostics and for quick finding of problems in the created project.

In order to diagnose the system, you should:

Open the project in the Object Manager;

Select Tools from the taskbar and then Save the diagnostic package:

In the window that opens, select Save:

af://n3081
af://n3082
af://n3111

Specify where to save the file and give the backup name:

Then the package will appear in the selected location in * .zip * format. The content will be as

follows:

The package created in this way contains:

folders with configuration files of all CLUs;

"logs" folder containing the file with the specified application logs;

.zip package containing the interface database used in the project;

package .zip containing information about the project;

project backup file.

XII. SMART PANEL

1. Smart Panel equipment

Smart Panel consists of:

OLED display;

Four touch buttons;

A sensor that recognizes four gestures;

proximity / presence sensor;

Temperature sensor;

Light intensity sensor;

Buzzer.

2. Connection of the Smart Panel to the CLU

Note! Smart Panel is available for Object Manager version 1.2.0.180202 and higher, and for CLU

with firmware 04.07.29-1802 and higher.

Note! Smart Panel version v4 is available for Object Manager in version 1.2.1.190201 and higher,

and for CLU with firmware 04.07.49-1912 and higher.

Connection of the Smart Panel to the system takes place by means of twisted-pair cable. To the

appropriate terminals of the ARK connector, two pairs of twisted wires should be derived from the

Smart Panel - the connection diagram is shown in the figure below:

Connect one lead from the first twisted pair (eg UTP cable) to the Vcc terminal;

Connect the other wire from the pair to the GND terminal;

Connect one cable from the other pair to terminals A and B.

af://n3150
af://n3151
af://n3170

After connecting and carrying out the CLU Discovery operation in the project, the following Smart Panel

v3 elements will appear in the list of modules:

After connecting and carrying out the CLU Discovery operation in the project, the following Smart Panel

v4 elements will appear in the list of modules:

If you correctly add elements to the project, you can proceed to create a configuration.

Note! In case of failure, please contact Support!

3. Information to help you create a configuration

1. The configuration of the panel with the display differs from the configuration of the classic

Grenton touch panel, inter alia, that in addition to: features, methods and events of each button,

temperature / light sensor, the user also has: a gesture sensor, as well as features, methods and

events for the Smart Panel only.

af://n3197

Name Description

GestureIconUp The name of the BMP file with the icon for the up gesture (no extension)

GestureIconDown BMP file name with icon for gesture down (no extension)

GestureIconLeft BMP file name with icon for gesture left (no extension)

GestureIconRight
The name of the BMP file with the icon for the right gesture (no

extension)

ProximitySens Sensitivity of the proximity sensor

ProximityTimeout The time after which the display will be turned off

ProximityValue Proximity sensor signal (non-dimensional value)

BuzzerValue Control of sound signaling (on / off)

From version 04.03.04.1910 new Smart Panel functionalities are available, such as the

PANEL_PAGE configuration object or new features, methods and events in the PANEL object.

2. The display, in which the touch panel is equipped, has a resolution of 128x64 pixels.

3. Smart Panel v3 can work in two modes: displaying icons (display is divided into 4 fields) or in

drawing mode (using the entire display field).

Smart Panel v4 can work in four modes:

1. Backward compatibility mode (default configuration) - Inactive ,

2. Icon display mode (display divided into 4 fields) - Buttons ,

3. Drawing mode (using the entire display field) - FreeDraw ,

4. Operating mode of thermostats - Thermostats .

4. The touch panel is equipped with a microSD card slot, which is used to store the default icons

displayed on the panel. Files must be placed in the main directory of the card with the extension

.bmp.

5. The Smart Panel screen is blank by default. It lights up when the proximity sensor is activated

(display time is taken from the panel -> ProximityTimeout feature - after this time the panel does

not detect presence, the display turns off).

6. The presence sensor operates depending on the distance set using the sensitivity - the

ProximitySens feature. Upon detection of presence, the OnProximityDetect event is

generated.

4. Configuration of the Smart Panel module in the
version v3

4.1. Configuration parameters

A. Panel

FEATURES

METHODS

af://n3222
af://n3223
af://n3224

Name Description

SwitchOnDisplay It wakes the display from sleep mode

ShowButtons Changes the display mode to buttons

ClearScreen Cleans the display content in freedraw mode

PrintText Display text in freedraw

PrintFloat Displays the number in freedraw

DrawLine Draws the line in freedraw

DrawPoint Draws a point in freedraw

DrawIcon Draws the icon (bmp) in freedraw

DisplayContent
Displays the contents of the graphic memory buffer; changes the

display mode to freedraw

SetGestureIconUp Sets the BMP file with the icon for the up gesture

SetGestureIconDown Sets the BMP file with the icon for the down gesture

SetGestureIconLeft Sets the BMP file with the icon for the left gesture

SetGestureIconRight Sets the BMP file with the icon for the right gesture

SetProximitySens Sets the sensitivity of the proximity sensor

SetProximityTimeout Sets the time after which the display will be dimmed

SetBuzzerValue Enables / disables sound signaling

Name Description

OnGestureUp An event related to a gesture up

OnGestureDown An event related to a gesture down

OnGestureLeft An event related to a gesture left

OnGestureRight An event related to a gesture right

OnProximityDetect
An event triggered when a person is detected approaching the panel

display

EVENTS

Name Description

Mode
Returns the set operation mode of the button: 0 - monostable, 1 - bistable, 2 -

locked (the diode is red with continuous light)

HoldDelay
The time (in milliseconds) after which the OnHold event will be triggered

(when pressing and holding the button)

HoldInterval
Cyclic time interval (in milliseconds), after which when the button is held the

OnHold event will be triggered

Value Returns the input state (0 or 1)

Label Text describing the button (displayed instead of the icon)

IconA

File name of the icon assigned to the button in monostable and bistable

mode in the OFF position; the name preceded by "~" will display the graphic

in negative; IconA has priority over the Label feature

IconB
The file name of the icon assigned to the button in bistable mode in the ON

position; the name preceded by "~" will display the graphic in negative

Name Description

SetMode
Sets the mode of the button operation: 0 - monostable, 1 - bistable, 2 -

locked (the diode is permanently red)

SetHoldDelay Sets the value of HoldDelay

SetHoldInterval Sets the value of HoldInterval

SetLabel Sets the text describing the button

SetIconA Sets the A icon file

SetIconB Sets the B icon file

ShowOK Blinks the green LED on the button for two seconds (frequency 500ms)

ShowError Blinks the red LED on the button for two seconds (frequency 500ms)

LedSwitchOn It turns on the green LED on the button

LedSwitchOff Turns off the green LED on the button

B. Buttons

FEATURES

METHODS

EVENTS

af://n3330

Name Description

OnChange An event dispatched when the state changes (regardless of the value)

OnSwitchOn An event that is triggered when the high state on input is set

OnSwitchOff An event dispatched when the low state on input is set

OnShortPress The event is triggered after pressing the button for 500 - 2000 ms

OnLongPress The event is called after pressing the button for the 2000 - 5000 ms

OnHold
An event that is called for the first time after the HoldDelay time has

elapsed, and then cyclically every time HoldInterval

OnClick The event is triggered after pressing the button for less than 500ms

Name Description

Threshold
Hysteresis size (accuracy 0.1) specifying the sensitivity at which events are

generated: OnChange , OnLowerValue , OnRaiseValue

Sensitivity Time (in ms) for which the sampled values are averaged

MinValue
The minimum value of the Value property that is triggered by

the OnOutOfRange event

MaxValue
The maximum value of the Value property, which is exceeded by

the OnOutOfRange event

Value
Input value: for temperature sensor (from 0 to 45 ° C) or for light sensor (0 -

100%)

Name Description

OnChange Event triggered when the input state changes (regardless of value)

OnRaiseValue An event triggered when the upper hysteresis threshold is exceeded

OnLowerValue An event triggered when the hysteresis threshold is exceeded

OnOutOfRange The event is dispatched when the output value is outside the specified range

C. Temperature and lighting sensors

FEATURES

EVENTS

af://n3421

4.2 Creating button and display configurations

In order to create a configuration:

Open the PANEL_BUTTONX object (where X is the number of one of the 4 buttons) by double

clicking on the list of modules;

Go to the tab Events;

Configure the operation of the button by assigning methods to specific events (by clicking on "+"

on the right side of the window):

Select the tab Embedded features and define the objects displayed on the screen of a given

button:

Label - a feature defining the text assigned to a given button;

IconA - a feature that defines the name of the icon assigned to a given button when it is in

monostable mode or for bistable mode for the Value = 0 attribute;

IconB - a feature that specifies the name of the icon assigned to a given button when it is

in bistable mode for the Value = 1 property. To assign the same icon, but with the inverted

colors, the prefix name should be preceded by the "~" character (eg ~ lamp1on):

af://n3460

The above features can be set both in the tab Built-in features, as well as via the methods:

SetLabel , SetIconA , SetIconB .

Note! The SetIcon method has a higher priority in the system than the SetLabel method!

Send the configuration to the CLU.

4.3 Creating a gesture sensor configuration

To create a configuration for a gesture sensor:

Open - by double click - object Panel;

Go to the tab Events;

Assign methods to the events OnGestureUp , OnGestureDown ,

OnGestureLeft , OnGestureRight (clicking on the '+' on the right of each method):

af://n3489

It is possible to substitute icons displayed by default when calling gestures - for this purpose go to the

tab Built-in features and enter the names of the desired icons without the .bmp extension:

The use of icons will be possible when they will be loaded onto a microSD card with the extension .bmp.

Confirm the configuration window with OK;

Send the configuration to the CLU.

4.4 Configuration of the proximity sensor

To set the proximity sensor parameters:

Open - by double click - object Panel;

Go to the embedded features tab, where there are 3 features related to the proximity sensor:

ProximitySens - defines the sensitivity of the sensor;

ProximityTimeout - defines the time after which the display is blanked when motion is

not detected;

ProximityValue - returns the approximate distance in centimeters from the panel to the

object:

The above features can be set both in the tab Built-in features, as well as using the methods:

SetProximitySens and SetProximityTimeout (in the methods of the Panel object).

The proximity sensor reaction generates the OnProximityDetect event to which additional

methods can be added:

af://n3511

Send the configuration to the CLU.

4.5 Creating a multi-panel configuration of the touch panel

If you want to start creating a multi-page panel configuration, create a number (determines the number

of the start page) property on the CLU with the sample name page - double click on the CLU, go to the

User properties tab and select the button:

In order for the panel to display the desired content on the screen, it is necessary to create a script (eg

Display) with several pages - to do this select the button at the left edge of the Object Manager

window:

Note! The name of the script can not contain Polish characters!

PAGE WITH THE BUTTONS - Add a condition checking the current page number (value User

features: page) to the script and for the given condition - for a specific page - add the icon

allocation action for all 4 buttons (SetIconA methods for elements PANEL_BUTTON1-4) and the

method ShowButtons displaying selected icons on the panel screen;

Note! In addition to assigning icons to specific buttons, it is necessary to call the ShowButtons

method, as simply assigning them will not cause them to appear on the display!

af://n3537

Note! In the case of creating multiple pages, setting the button in the bistable mode - using the

feature / method - will not correctly read the state of the relay (due to the different functionality

of the buttons when changing pages)!

PAGE WITH GRAPHICS AND TEXTS - When designing a page containing graphics and texts,

please add:

condition checking the page number (it can not be a page with buttons);

PANEL action -> ClearScreen () ;

text and line setting actions (described below);

PANEL action -> DisplayContent () .

Text and line setting actions:

PANEL -> PrintText - method that causes text or feature to be printed - four parameters to

call it: initial screen coordinates (x, y), text and font size (where 1 - 10 pts, 2 - 14 pts) , 3 - 28

points);

PANEL -> PrintFloat - method working in the same way as PrintText , with the

difference that it has an additional parameter Precision, responsible for the number of

decimal places of the number parameter;

PANEL -> DrawLine - method drawing a line - it is necessary to enter 5 parameters to call it:

initial coordinates (x, y), final coordinates (xe, ye) and line color (where 0 - black, 1 - white) ;

PANEL -> DrawPoint - method drawing a point - you must specify 3 parameters to call it:

coordinates (x, y) and color (the parameter works as when calling the DrawLine method);

PANEL -> DrawIcon - method drawing the icon - you must enter 3 parameters to call it:

initial coordinates (x, y) and the name of the icon from the tray.

LOCKING THE SCRIPT - Add to the script the conditions that will cause that when the gesture is

generated to the right on the last page, the panel will return to the first page (and vice versa) - so

that the loop works.

The implementation of all the methods described above is presented in the screen shot of the sample

script:

The above script is placed at the end of the document in the text version (point 3).

The second page programmed in the script will look like this:

In the next step - to the panel gestures to the left and to the right - assign operations of

increasing the user variable page and running the script Display as in the drawing below:

Assign CLU -> OnInit to the script call Display:

Create a script (e.g. ClickButton1) to handle the OnClick event of one selected button on each

page - create separate scripts for each button:

Add a condition checking the page number;

In order to implement the bistable mode function for a button, add another condition

checking the current status of the icon and undertaking appropriate actions (switching on or

off, eg lighting);

Add further conditions to check the page number.

The implementation is shown in the following screenshot:

The above script is placed at the end of the document in a text version (point 4)

Note! The operation on variables used in the graphical mode of the panel does not refresh,

therefore the action of re-generating the page was used in the above script!

Finally, add additional scripts to all buttons and used events - respectively: script ClickButton1 to

event PANEL_BUTTON1 -> OnClick

3. Script Display in text version:

 if(not (CLU_220001205->Page==1)) then

 if(CLU_220001205->Page==2) then

 CLU_220001205->x250000863_PANEL1->ClearScreen()

 CLU_220001205->x250000863_PANEL1->PrintText(15,10,"Kitchen[°C]",2)

 CLU_220001205->x250000863_PANEL1->PrintFloat(80,38,CLU_220001205-

>x240000392_PANELSENSTEMP1->Value,1,2)

 CLU_220001205->x250000863_PANEL1->DrawLine(0,32,127,32,1)

 CLU_220001205->x250000863_PANEL1->DrawPoint(0,0,1)

 CLU_220001205->x250000863_PANEL1->DrawLine(70,32,70,63,1)

 CLU_220001205->x250000863_PANEL1->PrintText(15,40,CLU_220001205->Time,1)

 CLU_220001205->x250000863_PANEL1->DisplayContent()

 else

 if(CLU_220001205->Page==3) then

 CLU_220001205->x250000863_PANEL1->ClearScreen()

 CLU_220001205->x250000863_PANEL1->PrintText(63,31,"Hello!",2)

 CLU_220001205->x250000863_PANEL1->DrawIcon(0,0,"onoff")

4. ClickButton1 script in text version:

5. Configuration of the Smart Panel v4

Note! Smart Panel in the v4 version is available for Object Manager in version 1.2.1.190201 and

higher and for CLU with firmware 04.07.49-1912 and higher.

 CLU_220001205->x250000863_PANEL1->DisplayContent()

 else

 if(CLU_220001205->Page>3) then

 CLU_220001205->Page=1

 CLU_220001205->Display()

 else

 if(CLU_220001205->Page<1) then

 CLU_220001205->Page=3

 CLU_220001205->Display()

 end

 end

 end

 end

 else

 CLU_220001205->x250000863_PANEL_BUTTON1->SetIconA("lamp1off")

 CLU_220001205->x250000863_PANEL_BUTTON2->SetIconA("lamp2off")

 CLU_220001205->x250000863_PANEL_BUTTON3->SetIconA("shclosed")

 CLU_220001205->x250000863_PANEL_BUTTON4->SetIconA("winclose")

 CLU_220001205->x250000863_PANEL1->ShowButtons()

 end

 if(CLU_220001205->Page==1) then

 if(CLU_220001205->x250000863_PANEL_BUTTON1->IconA=="lamp1off") then

 CLU_220001205->Heater->SwitchOn(0,500)

 CLU_220001205->x250000863_PANEL_BUTTON1->SetIconA("lamp1on")

 else

 CLU_220001205->Heater->SwitchOff(0,500)

 CLU_220001205->x250000863_PANEL_BUTTON1->SetIconA("lamp1off")

 end

 else

 if(CLU_220001205->Page==2) then

 SYSTEM.Wait(1000)

 CLU_220001205->x250000863_PANEL_BUTTON1->ShowOK()

 else

 if(CLU_220001205->Page==3) then

 SYSTEM.Wait(1000)

 CLU_220001205->x250000863_PANEL_BUTTON1->ShowOK()

 end

 end

 end

af://n3638

5.1. Configuration parameters

A. Panel

FEATURES

af://n3641
af://n3642

Name Description

GestureIconUp
The name of the BMP file with the icon for the gesture Top (without

extension)

GestureIconDown
The name of the BMP file with the icon for the Down gesture (no

extension)

GestureIconLeft
The name of the BMP file with the icon for the Left gesture (no

extension)

GestureIconRight
The name of the BMP file with the icon for the Right gesture (no

extension)

ProximitySens Sensitivity of the proximity sensor (lower value - higher sensitivity)

ProximityTimeout The time after which the display will be turned off

ProximityValue Proximity sensor signal (non-dimensional value)

BuzzerValue

Control of sound signaling:

0 - Off ,

1 - On

GestureMode

Gesture orientation:

0 - Off ,

1 - Vertical ,

2 - Horizontal ,

3 - Vert+Horiz

GestureSens

Gesture sensitivity:

1 - Low ,

2 - Mid ,

3 - High

PageNr The number of the currently displayed page

PageDisplayMode

Information before changing the page:

0 - ShowImmediately ,

1 - ShowIconOrName ,

2 - ShowGesture

ButtonsLEDMode

The location of the buttons with low LED light:

0 - LocationLedOFF ,

1 - LocationLedON ,

2 - LocationLedONforActive

PageControlMode

The source that switches pages:

0 - Command (switching using the SetNextPage and SetPrevPage

methods)

1 - Gesture/Command (switching using gestures and SetNextPage

and SetPrevPage methods)

Name Description

GestureDisplayMode

Display information about the currently executed gesture:

0 - Off ,

1 - On

METHODS

Name Description

SwitchOnDisplay Wakes the display from sleep mode

ShowButtons
Changes the display mode to buttons. Clears the display and

displays the icons (or text) again for all buttons

ClearScreen Cleans the display content in freedraw mode

PrintText

Displays the text in freedraw mode using the parameters: x , y ,

txt , font size , where:

x and y are the coordinates expressed in pixels,

txt is a string,

font size is the font size(1: 10p, 2: 14p, 3: 32p)

PrintFloat

Displays the number in freedraw mode using the parameters:

x , y , number , precision , font size , where:

x and y are coordinates expressed in pixels,

number is the number,

precision is the number of decimal places,

font size is the font size (1:10p, 2:14p, 3:32p)

DrawLine

Draw lines in freedraw mode using the parameters: x , y ,

xe , ye , color , where:

x and y are initial coordinates,

xe and ye are final coordinates,

color is the colour line (0 - black, 1 - white).

The starting and ending coordinates are expressed in pixels

DrawPoint

Draws a point in the freedraw mode using the parameters: x , y ,

color , where:

x and y are the coordinates expressed in pixels,

color is the color of the point (0 - black, 1 - white)

DrawIcon

Draws the icon (bmp) in freedraw mode using the parameters:

x , y , Filename , where:

x and y are the coordinates expressed in pixels

Filename is the name of the icon (without extension)

DisplayContent
Displays the contents of the graphical memory buffer. Changes the

display mode to freedraw

SetGestureIconUp Sets the icon to perform the up gesture

SetGestureIconDown Sets the icon to perform the down gesture

SetGestureIconLeft Sets the icon to perform the left gesture

SetGestureIconRight Sets the icon to perform the right gesture

SetProximitySens Sets the ProximitySens value

SetProximityTimeout Sets the time in seconds after which the display goes out

SetBuzzerValue Control of sound signaling (On / Off)

Name Description

SetGestureMode Choice of gesture orientation

SetGestureSens Choice of gesture sensitivity

SetBeep
Generates sound at a given frequency [Hz], duration [ms] and

volume

SetPageNr Sets the number of the page displayed

SetPageDisplayMode Sets the information display mode before changing the page

SetButtonsLEDMode Sets the button location mode using the LEDs

SetPageControlMode Sets the source that switches pages (commands / pages)

SetGestureDisplayMode
Sets the display mode of the information about the executed

gesture

SetNextPage Displays the next page

SetPrevPage Displays the previous page

Draw Triggers an OnDraw event when OLED is active

Name Description

OnGestureUp An event triggered when an up gesture is executed

OnGestureDown An event triggered when a down gesture is executed

OnGestureLeft An event triggered when a left gesture is executed

OnGestureRight An event triggered when a right gesture is executed

OnProximityDetect An event triggered when a person approaching the display is detected

OnPageChange An event triggered when the page is changed in the panel

EVENTS

B. Buttons

FEATURES

af://n3805

Name Description

Mode
Returns the set operation mode of the button: 0 - monostable , 1 -

bistable , 2 - locked (locked)

HoldDelay
Time in milliseconds, after pressing and holding the button triggers the event

OnHold

HoldInterval
The cyclic interval in milliseconds that the OnHold event triggers when the

button is held

Value Returns the state of the button as 0 or 1

Label The text that describes the button (displayed instead of the icon)

IconA

File name of the icon assigned to the button in monostable and bistable

mode in the OFF position; the name preceded by "~" will display the graphic

in negative; IconA has priority over the Label feature

IconB
The file name of the icon assigned to the button in bistable mode in the ON

position; the name preceded by "~" will display the graphic in negative

Name Description

SetMode
Sets the button operation mode: 0 - monostable , 1 '- bistable , 2

- locked (locked)

SetHoldDelay Sets the value of HoldDelay

SetHoldInterval Sets the value of HoldInterval

SetLabel Sets the value of Label (text describing the button)

SetIconA Sets the file name of the A icon (without extension)

SetIconB Sets the file name of the B icon (without extension)

ShowOK
Blinks the green LED on the button for two seconds (frequency 500 ms).

The red LED of the button remains off

ShowError
The red LED on the button flashes for two seconds (500 ms frequency).

The green LED of the button remains off

LedSwitchOn It turns on the green LED on the button

RedLedSwitchOn Activates the red LED on the button

LedSwitchOff Turns off all LEDs on the button

METHODS

EVENTS

Name Description

OnChange An event that is triggered when the state changes to the opposite one

OnSwitchOn An event that is triggered when the high state on input is set

OnSwitchOff An event triggeredwhen the low state on input is set

OnShortPress An event triggered after pressing the button for 500 ms - 2000 ms

OnLongPress An event is triggered after pressing the button for 2000 ms - 5000 ms

OnHold

An event triggered when the input is in the high state, the first time after the

holdDelay time has elapsed, and then cyclically every HoldInterval

value

OnClick An event triggered after pressing the button for less than 500ms

C. Pages configuration (Panel_Page)

FEATURES

af://n3896

Name Description

PageType

The type of page displayed on the Smart Panel:

0 - Inactive ,

1 - Buttons ,

2 - Thermostats ,

3 - FreeDraw

PageName
Page name / name of the icon displayed on the Smart Panel (when switching

between pages)

Object_1_Id

Thermostat object ID or button number depending on page type, e.g.:

Thermostats page type: - for thermostat on local CLU: THE1325 - for remote

thermostat CLU: CLU220000001-> THE4321 For the PageType feature set

to Buttons / FreeDraw enter the number of the button (1..16)

Object_1_Name

The name of the thermostat displayed on the Smart Panel page. Applies

only to page Thermostats (no name - inactive thermostat). In the case of the

PageType feature set to Buttons / FreeDraw, the feature remains empty

Object_2_Id

Thermostat object ID or button number depending on page type, e.g.:

Thermostats page type: - for thermostat on local CLU: THE1325 - for remote

thermostat CLU: CLU220000001-> THE4321 For the PageType feature set

to Buttons / FreeDraw enter the number of the button (1..16)

Object_2_Name

The name of the thermostat displayed on the Smart Panel page. Applies

only to page Thermostats (no name - inactive thermostat). In the case of the

PageType feature set to Buttons / FreeDraw, the feature remains empty

Object_3_Id

Thermostat object ID or button number depending on page type, e.g.:

Thermostats page type: - for thermostat on local CLU: THE1325 - for remote

thermostat CLU: CLU220000001-> THE4321 For the PageType feature set

to Buttons / FreeDraw enter the number of the button (1..16)

Object_3_Name

The name of the thermostat displayed on the Smart Panel page. Applies

only to page Thermostats (no name - inactive thermostat). In the case of the

PageType feature set to Buttons / FreeDraw, the feature remains empty

Object_4_Id

Thermostat object ID or button number depending on page type, e.g.:

Thermostats page type: - for thermostat on local CLU: THE1325 - for remote

thermostat CLU: CLU220000001-> THE4321 For the PageType feature set

to Buttons / FreeDraw enter the number of the button (1..16)

Object_4_Name

The name of the thermostat displayed on the Smart Panel page. Applies

only to page Thermostats (no name - inactive thermostat). In the case of the

PageType feature set to Buttons / FreeDraw, the feature remains empty

METHODS

Name Description

SetPageType Sets the type of page displayed on the Smart Panel

SetPageName
Sets the page name / name of the icon displayed on the Smart Panel

(when switching between pages)

SetObject_1_Id Sets Object_1_Id value

SetObject_1_Name Sets Object_1_Name value

SetObject_2_Id Sets Object_2_Id value

SetObject_2_Name Sets Object_2_Name value

SetObject_3_Id Sets Object_3_Id value

SetObject_3_Name Sets Object_3_Name value

SetObject_4_Id Sets Object_4_Id value

SetObject_4_Name Sets Object_4_Name value

Name Description

OnPageOpen An event triggered when the page is opened

OnPageClose An event triggered when the page is closed

OnDraw

An event signaling the need for redrawing. Generation only in freedraw mode,

after entering the given page or when calling the Draw method and wake up

the screen

Name Description

Threshold
Hysteresis size (accuracy 0.1 ° C / 0.1%) defining the sensitivity at which

events are generated: OnChange , OnLowerValue , OnRaiseValue

Sensitivity The period (in ms) at which the sampled values are averaged

MinValue
The minimum value of the Value feature, exceeded by the OnOutOfRange

event

MaxValue
The maximum value of the Value feature ,exceeded by the OnOutOfRange

event

Value
Input value: for a temperature sensor from 0.0 to 45.0 ° C or for a light sensor

0 - 100%

EVENTS

D. Temperature and lighting sensors

FEATURES

af://n3983

Name Description

OnChange An event triggered when the Value attribute changes

OnRaiseValue An event triggered when the value changes to a higher one (rising edge)

OnLowerValue An event triggered when the value changes to a lower one (falling edge)

OnOutOfRange
An event triggered when the input value is outside the specified range

(MinValue ; MaxValue)

EVENTS

5.2. Creating a gesture sensor configuration

To create a configuration for a gesture sensor:

Open - by double click - object Panel;

Go to the tab Events;

Assign methods to the events OnGestureUp , OnGestureDown ,

OnGestureLeft , OnGestureRight (clicking on the + on the right of each method):

Note! In the case of configurations containing the configuration of pages (Buttons / FreeDraw /

Thermostats), the methods assigned to the OnGestureLeft and OnGestureRight events will not be

executed. This is related to the predefined functionality of switching between pages. You can

change the way pages scroll. To do this, change the setting of the PageControlMode feature to

Command. After doing this, the methods assigned to the events will be executed.

af://n4022

It is also possible to substitute the default icons displayed when gesturing - go to the Built-in features

and enter the names of the icons you want without a .bmp extension:

The use of icons will be possible when they will be uploaded to the microSD card with the .bmp

extension.

In addition, from version 04.03.04.1910 there is a possibility to choose the orientation of recognizable

gestures and their sensitivity. To do this, go to the Built-in features tab and select the desired

orientation and sensitivity of gesture recognition:

Embedded features, through which you can choose orientation and sensitivity:

GestureMode - possible change in the direction of gesture detection:

Off - gestures are not recognized;

Vertical - only up and down gestures are recognized;

Horizontal - only gestures left and right are recognized;

Vert+Horiz - gestures are recognized both up and down, as well as left and right.

GestureSens - possible change in gesture detection sensitivity:

Low - gesture performed close to the device in an accurate manner;

Mid - gesture performed both close to the device as well as from a short distance;

High - gesture made from a further distance, it is possible to detect the wrong gesture.

The above features can be set both in the tab Built-in features, as well as using methods:

SetGestureIconUp , SetGestureIconDown , SetGestureIconLeft , SetGestureIconRight ,

SetGestureMode , SetGestureSens (in the methods of the Panel object).

Confirm the configuration window with OK;

Send the configuration to the CLU Z-Wave.

5.3. Configuration of the proximity sensor

To set the proximity sensor parameters:

Open - by double-clicking - the Panel object;

Go to the Embedded Features tab, where there are 3 features related to the proximity sensor:

ProximitySens - determines the sensitivity of the sensor;

ProximityTimeout - defines the time after which the display is blanked when motion is

not detected;

ProximityValue - returns the approximate distance in centimeters from the panel to the

object;

The above features can be set both in the tab Built-in features, as well as using the methods:

SetProximitySens and SetProximityTimeout (in the methods of the Panel object).

af://n4076

The proximity sensor reaction generates the OnProximityDetect event to which additional

methods can be added:

Send the configuration to the CLU Z-Wave.

5.4. Panel object - new functionality

In the latest version of the Smart Panel module (from 04.03.04.1910), the Panel facility has introduced

a new functionality enabling, among other things:

sound generation;

management of LED button backlight;

the ability to enable / disable notification of the detected gesture;

page management mechanism, which will be described in detail in the next section.

The first of the introduced novelties is the ability to generate sound at a given frequency, length and

volume. The SetBeep method is used for this purpose:

af://n4101

Another feature available from the latest version of the software is the ability to locate buttons using

low LED light. To do this, go to the Built-in features tab and set the desired value of the

ButtonsLEDMode feature:

LocationLedOFF - the buttons on the Smart Panel module are not illuminated;

LocationLedOn - the buttons on the SmartPanel module are slightly illuminated;

LocationLedforActive - only keys that are in one of the two operating modes Monostable / Bistable

are highlighted. If the button is in Locked mode, its LED remains off.

In addition to the ability to manage the backlight buttons, it is possible to enable / disable informing

about the detection of a gesture. To do this, in the Embedded Features tab, find the

GestureDisplayMode feature by setting any value:

Off - information on the detection of a gesture is not displayed on the module screen;

On - information on the detection of a gesture is displayed on the module's screen.

The above built-in features can also be set using the methods: SetButtonsLEDMode and

SetGestureDisplayMode .

5.5. Panel object - page management mechanism

Smart Panel v4 introduces a new mechanism for page management. It consists of features,

methods and events that were placed in the Panel object:

Methods / Features:

SetPageNr / PageNr - using this method / feature it is possible to directly transition

between more pages at the same time. By entering the page number in the parameter and

then calling the method, the desired page will be displayed on the screen (you may need to

wake up the screen);

SetPageDisplayMode / PageDisplayMode - via the method / feature it is possible to set

the method of switching between pages. There are three modes to choose from:

ShowImmediately (0) - the transition between pages takes place immediately, it is not

preceded by displaying a message / icon / name;

ShowIconOrName (1) - the transition between pages precedes displaying the icon or

name entered in the feature PageName ;

ShowGesture (2) - the transition between the pages is preceded by the display of the

icon entered in the feature GestureIconLeft or GestureIconRight , depending on

the gesture made;

SetPageControlMode / PageControlMode - using the method / feature it is possible to

change the source with which the page change is made:

Command (0) - go to the previous / next page only using the methods SetPrevPage

and SetNextPage . In addition, left and right gestures become active, which means that

it is possible to assign OnGestureLeft and OnGestureRight events to the event;

Gesture / Command (1) - the transition to the previous / next page is possible using

gestures left and right, as well as using the methods SetPrevPage and

SetNextPage . If this property value is set, the left and right gestures have a

predefined functionality that has a higher priority over the actions assigned to the

OnGestureLeft and OnGestureRight events. This means that actions assigned to

these events will not be executed;

SetNextPage - the method allows you to go to the next page in the configuration;

SetPrevPage - the method allows you to go to the previous page in the configuration;

Draw - method used to generate the OnDraw event when the OLED is active;

Happening:

OnPageChange - an event generated when switching between pages

Note! The page management mechanism is available only for the configuration of pages made

through Panel_Page objects (Buttons / FreeDraw / Thermostats). In the case of a configuration

that was created in the previous manner (section 4.5), the above features, methods and event are

ignored.

af://n4133

5.6. Backward compatibility

When starting work with the new version of the Smart Panel module, the device is in the default

configuration, which is backward compatible. All four Panel_Page objects have the built-in feature

PageType set to Inactive. This allows you to work with the panel in the same way as before (in version

v3). Only the first four buttons on the list of objects are available. Buttons 5 to 16 are inactive, despite

the configuration options. The configuration of multiple pages is carried out in accordance with the

procedure described in Section 4.5.

5.7. Creating a configuration using the Buttons page object

In the Buttons operating mode, there are 4 physical touch buttons and up to 16 virtual buttons spread

over 4 pages, each of which can perform independent functions. It is also possible to combine / merge

2,3,4 objects into one button (described in more detail in subsection XII.5.10).

Note! In the Buttons mode, drawing content on the display is blocked.

af://n4172
af://n4175

Creating a panel configuration that supports a page or pages Buttons is best to start with the

configuration of the buttons to be used. In order to parametrize them:

Open the PANEL_BUTTONX object (where X is the number of one of the 16 buttons) by

double clicking on the list of modules;

Go to the Events tab;

Configure the operation of the button by assigning methods to specific events (by clicking "+"

on the right side of the window):

Select the tab Embedded features and define the objects displayed on the screen of a given

button:

Label - a feature defining the text assigned to a given button;

IconA - a feature that defines the name of the icon assigned to a given button when it is

found in * Monostable * mode or * Bistable * mode for OFF position;

IconB - a feature that defines the name of the icon assigned to a given button when it is in

Bistable mode in the ON position. To assign the same icon, but with the inverted colors,

precede the name of the pictogram with the "~" sign (eg ~ heaton):

The above built-in features can be set both in the tab Built-in features, as well as via the methods:

SetLabel , SetIconA , SetIconB .

Note! The SetIconA method has a higher priority in the system than the SetLabel method!

Send the configuration to the CLU Z-Wave.

The next step in creating the configuration is configuring Panel_Page objects depending on the number

of buttons. One Panel_Page object supports up to 4 buttons. To do this:

Open the object PANEL_PAGEX (where X is the number of the next page) by double clicking on the

list of modules;

Go to the tab Events;

Configure the operation of the site by assigning methods to specific events (by clicking "+" on the

right side of the window):

Note! For page type Buttons, the OnDraw event is not generated.

Select the tab Built-in features and define the supported page type and link the page objects to

the buttons:

PageType - a feature that specifies the page type, set it to Buttons (1);

PageName - a feature that specifies the name of the page or icon that will be displayed

when switching between pages (works only when the 'PageDisplayMode` feature is set to 1

(ShowIconOrName) in the Panel object);

Object_X_Id - identifier / button number. In order to read the value in the field Serial

number of the object PANEL_BUTTONX

Object_X_Name - name of the thermostat. For the page type Buttons, the feature should be

left blank;

Note! Sending the configuration only with the defined page type, without setting the binding of

objects with the buttons is connected with starting the panel operation mode as Buttons.

However, the buttons on the module will be inactive. This is related to the non-complementing of

the Object_X_Id features.

Send the configuration to the CLU Z-Wave.

5.8. Creating a configuration using the FreeDraw site object

In FreeDraw mode, as with Buttons, there are 4 physical touch buttons and up to 16 virtual buttons

spread over 4 pages, each of which can perform independent functions. You can also combine / merge

objects into a single button. The OLED display works in FreeDraw mode, i.e. it is fully available for user's

LUA scripts. A drawing engine has also been created, in which drawing scripts are called by the OnDraw

event generated by the panel when it is necessary. The system calls the Draw method at the moment

when the content drawn on the module has changed.

af://n4245

A. General rules for creating configurations

Creating a panel configuration that supports a page or pages FreeDraw is best to start with the

configuration of the buttons to be used. Their parameterization is described in the previous subsection.

The next step in creating the configuration should be creating scripts that draw the content on the

Smart Panel display. Their creation is analogous to the v3 version of the Smart Panel module (see

chapter XII.4).

Example of a script that draws content on the display (Page1):

Example of a script that draws content on the display (Page1):

Note! A restriction has been introduced in the drawing mechanism. CLU Z-Wave expects 2

seconds to finish drawing with the DisplayContent method. Otherwise, the following message will

be displayed on the screen:

"page: PageName

free draw

! TIMEOUT !"

The following figure shows the current drawing mechanism.

CLU220000260->x250000053_PANEL1->ClearScreen()

CLU220000260->x250000053_PANEL1->PrintText(15,10,"Kitchen [°C]:",2)

CLU220000260->x250000053_PANEL1->PrintFloat(80,38,CLU220000260-

>x240000659_PANELSENSTEMP1->Value,1,2)

CLU220000260->x250000053_PANEL1->DrawLine(0,32,127,32,1)

CLU220000260->x250000053_PANEL1->DrawPoint(0,0,1)

CLU220000260->x250000053_PANEL1->DrawLine(70,32,70,63,1)

CLU220000260->x250000053_PANEL1->PrintText(15,40,CLU220000260->Time,1)

CLU220000260->x250000053_PANEL1->DisplayContent()

af://n4249

The next step in creating the configuration is configuring Panel_Page objects depending on the number

of buttons. One Panel_Page object supports up to 4 buttons. To do this:

Open the object PANEL_PAGEX (where X is the number of the next page) by double clicking on the

list of modules;

Go to the tab Events;

Configure the operation of the site by assigning methods to specific events (by clicking "+" on the

right side of the window):

Note! For the page type FreeDraw, complete the OnDraw event.

Select the tab Built-in features and define the supported page type and link the page objects to

the buttons:

PageType - a feature that specifies the page type, set it to FreeDraw (3);

PageName - a feature that specifies the name of the page or icon that will be displayed

when switching between pages (works only when the PageDisplayMode feature is set to 1

(ShowIconOrName) in the Panel object);

Object_X_Id - identifier / button number. To do this, read the value in the field Serial

number of the object PANEL_BUTTONX

Object_X_Name - name of the thermostat. For the page type FreeDraw, leave the feature

blank;

Note! Sending the configuration only with the defined page type, without setting the binding of

objects with the buttons is connected with starting the panel operation mode as FreeDraw.

However, the buttons on the module will be inactive. This is related to the non-complementing of

the Object_X_Id features.

Send the configuration to the CLU Z-Wave.

Note! It is possible to overwrite the display content by calling drawing methods from the Object

Manager application or through other scripts that are not assigned to the OnDraw event.

However, the overwritten content will be cleared when you move to another page or call the

Draw method and wake up the screen.

B. Set up the site as a clock

To configure the site as a clock:

Create a script displaying the current time (Clock);

af://n4298

Create a virtual object Timer:

Go to the tab Events;

Configure the operation of the virtual object by assigning the Draw method of the

Panel object to the OnTimer event:

Select the Embedded features tab and define the configuration parameters of the object:

Open the PANEL_PAGEX object (where X is the page number) by double-clicking on the list of

objects:

Go to the tab Events

Configure the operation of the website by assigning methods to specific events (by clicking

"+" on the right side of the window):

Select the tab Built-in features and define the configuration parameters of the object;

Send the configuration to the CLU Z-Wave.

Script Clock in text version:

5.9. Creating a configuration using the Thermostats page

object

In the Thermostats mode, a page consisting of 4 objects (including support for up to 16 objects on 4

pages) is available for which thermostat objects defined in the system are assigned. It is possible to

change the parameters of thermostats such as set temperature or operating mode. It is also possible to

switch the thermostat on or off.

Note! In the Thermostats mode, the buttons as well as the drawing of content on the display are

blocked.

CLU220000260->x250000053_PANEL1->ClearScreen()

CLU220000260->x250000053_PANEL1->PrintText(25,25,CLU220000260->Time,1)

CLU220000260->x250000053_PANEL1->DisplayContent()

af://n4335

Creating a panel configuration that supports a page or pages of type Thermostats is best started by

creating thermostats to be used in the configuration. Description of creation and operation of the virtual

object Thermostat is described in subsection IX.5.

The v4 version of the Smart Panel module supports two types of thermostats:

Local thermostat - it is a virtual object type Thermostat created on the CLU Z-Wave module, to

which the Smart Panel module is connected with the currently created configuration;

Remote thermostat - it is a virtual object of type Thermostat created on another CLU Z-Wave

module;

Through the Smart Panel module it is possible to change such parameters of a virtual object Thermostat

as:

PointValue - preset temperature, the ability to read the currently set temperature as well as the

change to a new value;

Mode - thermostat mode:

In automatic mode Auto (2) the temperature value is read from the schedule. It is not

possible to change this temperature via the Smart Panel module;

In manual mode Manual (0) , the temperature value is read from the PointValue feature.

Through the Smart Panel module, it is possible to change this temperature;

State - current thermostat status: off (Off (0)) / on (On (1)).

A. Creating a configuration with a local thermostat

To create a configuration using a local thermostat you should:

Create a thermostat on the Z-Wave CLU, to which the Smart Panel module is connected;

Configure the virtual object as intended;

Open object PANEL_PAGEX (where X is the number of one of 4 pages) by double clicking on the list

of objects

Select the tab Embedded features and define the objects displayed on the screen:

PageType - a feature that specifies the page type, set it to Thermostats (2);

PageName - a feature that specifies the name of the page or icon that will be displayed

when switching between pages (works only when the 'PageDisplayMode` feature is set to 1

af://n4361

(ShowIconOrName) in the Panel object);

Object_X_Id - thermostat identifier. To do this, read the value in the field Id of the virtual

object Thermostat. The local thermostat ID is not preceded by the CLU ID:

Object_X_Name - name of the thermostat. The lack of a thermostat name in the parameter

causes that the thermostat is not displayed;

Note! Sending the configuration only with the defined page type, without setting the binding of

objects with the buttons, is connected with starting the panel operation mode as Thermostats.

The display will show dots ("..."). This is related to the non-complementing of the features

Object_X_Id and Object_X_Name .

Send the configuration to the CLU Z-Wave.

B. Creating a configuration with a remote thermostat

To create a configuration using a remote thermostat you should:

Create a thermostat on the Z-Wave CLU, to which the Smart Panel module with the current

configuration is not connected;

Configure the virtual object as intended;

Open object PANEL_PAGEX (where X is the number of one of 4 pages) by double clicking on the list

of objects

Select the tab Embedded features and define the objects displayed on the screen:

PageType - a feature that specifies the page type, set it to Thermostats (2);

PageName - a feature that specifies the name of the page or icon that will be displayed

when switching between pages (works only when the PageDisplayMode feature is set to 1

(ShowIconOrName) in the Panel object);

Object_X_Id - thermostat identifier. To do this, read the value in the field Id of the virtual

object Thermostat. The remote thermostat ID must be preceded by the CLU ID:

Object_X_Name - name of the thermostat. The lack of a thermostat name in the parameter

causes that the thermostat is not displayed;

af://n4389

Note! Sending the configuration only with the defined page type, without setting the binding of

objects with the buttons, is connected with starting the panel operation mode as Thermostats.

The display will show dots ("..."). This is related to the non-complementing of the features

Object_X_Id and Object_X_Name .

Send the configuration to the CLU Z-Wave.

The diagram below shows an overview of the thermostat on the Smart Panel screen. Via the arrow, the

user can go to the next thermostat on the page. However, you can change the set temperature using "-"

/ "+".

C. Predefined button behavior

af://n4420

Button
Short / long

press
Description of behavior

Top left
Short press

(click)
Changing the thermostat operating mode: Manual / Auto

Top left
Long press

(hold)
Change the state of thermostat: Off/On

Top

right

Short press

(click)
Go to the next thermostat on the page

Top

right

Long press

(hold)
No defined functionality

Lower

left

Short press

(click)
Reduction of the set temperature (PointValue) by 0.1 ° C

Lower

left

Long press

(hold)

Reducition of the set temperature (PointValue) - as long as the

button is held down

Lower

right

Short press

(click)
Increasement of the set temperature (PointValue) by 0.1 ° C

Lower

right

Long press

(hold)

Increasement of the set temperature (PointValue) - as long as

the button is held down

5.10. Connecting objects to larger buttons

The new version of Smart Panel also introduces the ability to combine / merge 2, 3 or 4 objects into one

larger button. The functionality is available only in the Buttons and FreeDraw page mode. In order to

create a bigger button you should:

Configure PANEL_BUTTOX objects (where X is the button number):

In the Events tab configure the operation of the button by assigning methods to specific

events;

In the Built-in features, define objects displayed on the screen of a given button;

Open object PANEL_PAGEX (where X is page number);

Go to the tab Events;

Set up the website by assigning methods to specific events;

Go to the tab Embedded features;

Set the PageType feature to Buttons or FreeDraw;

Set the Object_X_Id features according to any version of the join:

Merging 2 objects into one horizontal button - the icon set for the button is displayed in the

middle at the top of the screen (for objects Object_1_Id and Object_2_Id) or lower part

of the screen (for objects Object_3_Id and Object_4_Id);

merging 2 objects into one button vertically - the icon set for the button is displayed in the

middle on the left part of the screen (for objects Object_1_Id and Object_3_Id) or on

the right part of the screen (for objects Object_2_Id and Object_4_Id);

Merging 3 objects into one button - two identical icons are displayed, depending on how the

objects are connected;

af://n4458

Merging 4 objects into one button - the icon set for the button is displayed in the center of

the screen

6. Configuration of the Smart Panel v6

Note! Smart Panel in the v6 version is available for Object Manager in version 1.4.1 and higher

and for CLU with firmware 5.08.01 and higher.

6.1. Configuration parameters

In the latest version of the Smart Panel v6 module, new configuration parameters have been introduced

for such objects as:

PANEL,

PANEL_PAGE,

PANELSENSTEMP.

The full list of changes introduced in the V6 version can be found in the release notes of the given

version: Release Notes - Smart Panel module

6.2. New functionality

A. The mechanism of informing about incorrect configuration / entering to

the Distributed Logic mode

A new functionality introduced with the v6 version is the mechanism of informing the user about a

wrong configuration or entering to the Distributed Logic mode. This mechanism is based on the fact that

the module waits about 10 seconds for receiving the configuration after sending it or restarting the

system. After this time, the waiting period for configuration ends and the user will be informed about a

misconfiguration or switching to Distributed Logic mode by one short and low beep.

B. Distributed Logic mode

Another functionality added to the latest version of the Smart Panel module is the Distributed Logic

mode. It is available from version 6.1.8-2115 and higher. Detailed information on the configuration and

operation of Distributed Logic - see XIX.

6.3. Changing the UI and the mechanism of operation of

Thermostats pages

The Smart Panel module in version v6 offers a refreshed UI of Thermostats websites, as well as new

functions. The method of creating and configuring a page with the use of Thermostats type objects is

the same as for the previous versions - see XII.5.9.

A. Thermostat UI change

The diagram below shows an overview the appearance of the refreshed thermostat on the Smart Panel

screen. Several elements have changed:

entering the icon in the upper left corner - by default, the "chmode" icon on the SD card is

displayed (the icon is shown in the diagram). However, if this icon is not present on the SD card, the

word "mode" will be displayed. Additionally, the user can enter his own icon using the

SetObject_X_CustomIcon method or the feature Object_X_CustomIcon ,

af://n4489
af://n4492
https://grentonsmarthome.github.io/release-en/smartpanel/
af://n4502
af://n4503
af://n4505
af://n4507
af://n4509

using the arrow, the user can go to the next thermostat on the page (short press of the button in

case of more than one thermostat on the page) or go to the next page (short press in case of one

thermostat on the page, longer press of the button in case of more than one thermostat on the

page),

dots have been introduced next to the arrow, which indicate the number of the currently displayed

thermostat (one dot - Object_1_Id, two dots - Object_2_Id, etc.). If there is only one thermostat on

the website, the dots are not displayed,

using "-" / "+" it is possible to change the set temperature and the operating mode of the

thermostat from Auto to Manual,

a longer pressing of the upper left button (hereinafter referred to as 'mode') turns the thermostat

off / on or changing from Manual mode to Auto mode,

when the thermostat is turned off, the set temperature disappears and the word "Off" appears,

which is located centrally,

the display of temperature read from the source has also changed - now the temperature value

before the decimal point is displayed in larger font, while the value after the decimal point and the

unit are displayed in a smaller font. Additionally, the display of this temperature depends on the

size of the entered icon - more on this subject in the next section.

B. New features on the Thermostats page

From version v6 of the Smart Panel module, new functionalities are available on the Thermostats page.

It is related to the changes made to the UI of the thermostat.

1. Possibility to set your own icons

The first new functionality is the aforementioned possibility for the user to set their own icons in

the upper left corner of the display. Their change is possible both through the

SetObject_X_CustomIcon method as well as through the feature Object_X_CustomIcon . The

width of the entered icon affects the "x" coordinate of the current temperature. The 64 x 32 pixel

af://n4527

icons are allowed. If the icon width x > 64 is exceeded, only the icon itself will be drawn on the

display - the UI of the thermostat will not be displayed - it is the so-called "big icon" mode. To go

back to the thermostat interface, set an icon whose width does not exceed 64 pixels.

2. Ability to assign actions to new events

Another functionality introduced in the new version of the module is the ability to assign actions

to new events OnThermXModeButtonClick , where X is the number of the thermostat on the

page. This event is generated when the 'mode' button (upper left button) is clicked.

3. An example of configuration of new functionalities

1. Local thermostat configuration with operation change (heating / cooling)

The following objects are used to create this configuration:

Thermostat virtual object,

DOUT1 object (e.g. Relay module) - responsible for heating / cooling activation - used in

the Thermostat virtual object,

DOUT2 object (e.g. Relay module) - selection of what is to be switched on: heating or

cooling - used in scripts.

The following screenshot shows the configuration of the PANEL_PAGE object and the

Thermostat virtual object in the default setting, which is heating.

Configuration of the OnTherm1ModeButtonClick event:

Script script_change_mode() that changes the operating mode of the thermostat from

heating to cooling and vice versa:

The above script in the text version:

Script script_heating() for changing the ControlDirection feature to a value responsible for heating, as

well as changing the icon and selecting heating / cooling:

 if(CLU221000454->Thermostat->ControlDirection==0) then

 CLU221000454->script_cooling()

 else

 CLU221000454->script_heating()

 end

Script script_cooling() for changing the ControlDirection feature to the value responsible for cooling, as

well as changing the icon and selecting heating / cooling:

C. Predefined button behavior

 CLU221000454->Termostat->SetControlDirection(0)

 CLU221000454->x201000007_DOUT2->SwitchOff(0)

 CLU221000454->x250002161_PANEL_PAGE1->SetObject_1_CustomIcon("sun")

 CLU221000454->Termostat->SetControlDirection(1)

 CLU221000454->x201000007_DOUT2->SwitchOff(1)

 CLU221000454->x250002161_PANEL_PAGE1->SetObject_1_CustomIcon("cold")

af://n4565

Button

Short

/ long

press

Description of behavior

Top left

Short

press

(click)

Generating an OnThermXModeButtonClick event, where X is the number

of the thermostat on the page

Top left

Long

press

(hold)

Change of the thermostat status: Off/On. In addition, it allows to switch

from Manual mode to Auto mode

Top

right

Short

press

(click)

Go to the next thermostat on the page if there is more than one

thermostat on the page

Go to the next page if there is only one thermostat on the page

Top

right

Long

press

(hold)

Go to the next page

Lower

left

Short

press

(click)

Reduction of the set temperature (PointValue) by 0.1 ° C, as well as

changing the operating mode from Auto to Manual

Lower

left

Long

press

(hold)

Reducition of the set temperature (PointValue) - as long as the button

is held down, as well as changing the operating mode from Auto to Manual

Lower

right

Short

press

(click)

Increasement of the set temperature (PointValue) by 0.1 ° C, as well as

changing the operating mode from Auto to Manual

Lower

right

Long

press

(hold)

Increasement of the set temperature (PointValue) - as long as the

button is held down, as well as changing the operating mode from Auto to

Manual

XIII. GATE ALARM Module

Note! The described functionality and integration with the mentioned alarm control panels is

available for GRENTON GATE ALARM, DIN, Eth (INT-221-E-01) with firmware 1.1.20-2219 or

higher!

1. General information

The module is used to integrate the Grenton Smart Home system with 3rd party alarm systems. Grenton

GATE ALARM allows integration with Satel and Jablotron alarm systems.

2. Module configuration

Note! Before starting any work with the GATE Alarm module, it is necessary to update the

interface database!

Time setting via NTP server

The GATE Alarm module allows you to set the time using the NTP server, taking into account the time

zone and changing the time (winter / summer). The time is taken automatically from the NTP server

(pool.ntp.org).

There are three features for configuration:

UseNTP - determines whether GATE uses NTP,

NTPTimeout - waiting time for a response from the NTP server,

TimeZone - setting the GATE time zone - 22 zones are available.

Note! Getting the time from an NTP server requires that GATE be in a network that has an

internet connection.

3. Integration with the Satel alarm control panel

3.1. General information

Integration of the Grenton system with the Satel alarm control panel is possible via the ETHM-1 module.

You can create virtual objects of the type: SatelZone, SatelInput, SatelOutput. It is also possible to use

the integration coding offered by Satel.

Note! There is no limit to the number of objects for the created virtual objects - the limitation is

the device memory, which is influenced by e.g. level of logic expansion on the module. The Satel

object is an exception - only one can be created.

af://n4604
af://n4608
af://n4611
af://n4630
af://n4631

The configuration structure is as follows:

Virtual objects:

Satel - allows you to perform a configuration that allows you to integrate the system with the

Grenton alarm panel;

SatelZone - allows to create a zone to which access will be possible after entering the password

of one of the users or the password of the administrator himself;

SatelInput - gives the ability to monitor the status of the selected input;

SatelOutput - allows you to monitor and set the status of the selected output after entering the

user or administrator password.

3.2. Configuration for the Satel system

Note! An interface database update is required before any work with the GATE Alarm module!

Note! All required information can be found in the ETHM module configuration - using the keypad

connected to the Satel panel or using a dedicated DLOADX program.

Before starting the configuration you should have information about the Satel central unit and the

ETHM-1 module:

IP address of the ETHM module (Satel) - available in the Satel configuration (DLOADX -> Data ->

Structure and Hardware -> Equipment tab -> Keypads -> ETHM-1 -> section Server IP address);

ETHM integration port - available in the Satel configuration (DLOADX -> Data -> Structure and

Hardware -> Equipment tab -> Keypads -> ETHM-1 -> Integration section);

Administrator / users password - the default password in the Satel configuration for the

administrator is: 1111 (DLOADX -> Users -> Users);

Integration on the side of the ETHM module must be enabled (DLOADX -> Data -> Structure and

Hardware -> Equipment tab -> Keypads -> ETHM-1 -> Integration section);

af://n4648

In case when encryption - Integration Encoding is enabled, you should also know the encryption

key (DLOADX -> Data -> Structure and Hardware -> Equipment tab -> Keypads -> ETHM-1 ->

Integration section);

The coding key can be found in the Satel configuration (DLOADX -> Data -> Structure and

Hardware -> Equipment tab -> Keypads) or read it using the keypad (Keypad -> Service mode ->

Options -> Key integration).

3.3. Virtual Objects

A. Satel

To perform the correct configuration of the GATE Alarm module it is necessary to:

Create a virtual object Satel:

af://n4676
af://n4677

Go to configuration - tab Embedded features and enter:

IP - IP address of the ETHM module (Satel);

Port - ETHM integration port;

AdminPassword - administrator password;

EncryptionEnabled - enable encoding - set if the integration on the ETHM module is marked

with Integration Encoding;

Encryption Key - integration key (for attached encoding):

Information on where to find the information you need can be found in the second section - look up

XIII.1.2..

Send configuration and verify connection - tab Embedded features, 'State' feature (1 - correctly

connected to the control panel, 0 - no connection):

B. Zone

The GATE Alarm module allows you to add a virtual object Zone:

Create an object SatelZone:

Define the No. (number of the selected zone) and enter the user's password:

af://n4705

Send configuration and verify the connection - tab Built-in features, the Value feature (-1 means

no connection to the control panel, the others mean a correct connection and the state of the zone

is returned: 0 or 1);

Arm / disarm the zone - the ArmZone and DisarmZone methods.

C. Output

GATE Alarm allows adding a virtual object Output:

Create an SatelOutput object:

af://n4722

Define the No. (number of the selected output on the Satel board) and enter the user's password:

Send configuration and verify the connection - tab Embedded features, the Value feature (-1

means no connection to the central unit, the others mean a correct connection and the status of

the zone is returned: 0 or 1);

Switch on / off the output - methods SwitchOn and SwitchOff .

D. Input

GATE Alarm allows adding a virtual object Input:

Create an SatelInput object:

Define No. (number of the selected input on the Satel):

Send configuration and verify the connection - tab Embedded features, the Value feature (-1

means no connection to the control panel, the others mean a correct connection and the status of

af://n4739

the zone is returned: 0 or 1).

4. Integration with the Jablotron control panel

4.1. General information

Note! The described functionality and integration with the mentioned alarm control panels is

available for GRENTON GATE ALARM, DIN, Eth (INT-221-E-01) with firmware 1.1.20-2219 or

higher!

Note! Integration of the Grenton system concerns the control panels:

Jablotron JA-100K,

Jablotron JA-101K,

Jablotron JA-103K,

Jablotron JA-107K.

Integration of the Grenton system with the Jablotron control panel is possible via the JA-121T module. It

is possible to create virtual objects of the type: JablotronSection, JablotronOutput, JablotronDevice.

Note! There is no limit to the number of objects for the created virtual objects - the limitation is

the device memory, which is influenced by e.g. level of logic expansion on the module. The

Jablotron object is an exception - only one can be created.

The configuration structure looks like this:

Jablotron - allows configuration to be made to integrate the system with the Jablotron alarm

control panel;

JablotronSection - allows creating a zone to which access will be possible after entering the

password of one of the users or the password of the administrator himself;

JablotronDevice - gives the ability to monitor the status of the selected input / device;

JablotronOutput - allows to monitor and set the status of the selected output after entering the

user or administrator password.

af://n4753
af://n4754

4.2. Configuration for the Jablotron system

Note! An interface database update is required before any work with the GATE Alarm module!

For integration between the Gate module and the Jablotron control panel, the JA-121T module is used.

The JA-121T module must be connected to the Jablotron control panel system and added to the system

list. Information on adding / using individual Jablotron modules can be found in the manufacturer's

documentation.

Communication between the Gate and the JA-121T module takes place via the RS485 interface -

connection between the screw terminals A (D +), B (D-) on both modules.

Note! The JA-121T module must be enabled in the Passive mode.

Note! Information on the remaining settings and their application can be found in the

documentation of the JA-121T module on the manufacturer's website.

After connecting the modules and correctly configuring the JA-121T device, you can proceed to creating

and configuring virtual objects of the GATE Alarm module.

4.3. Virtual objects

A. Jablotron

In order to properly configure the GATE Alarm module, you must create the virtual Jablotron object:

af://n4783
af://n4795
af://n4796

Then go to configuration - Built-in Features tab and enter

AdminCode - administrator access code;

UpdatePeriod - Control panel status update period;

B. Section / zone

GATE Alarm allows you to add a virtual JablotronSection object:

Creating the JablotronSection object:

af://n4806

Then go to configuration - Built-in Features tab and enter:

Nr - parameter defining to which section the object refers;

UpdatePeriod - The access code will use the admin code for '*';

C. Output

GATE Alarm allows you to add a virtual object JablotronOutput

Creating the JablotronOutput object:

af://n4817

Then go to configuration - Built-in Features tab and enter:

Nr - parameter defining to which output the object relates;

AccessCode - The access code will use the admin code for '*';

D. Input / Device

GATE Alarm allows you to add a virtual object JablotronDevice

Creating the JablotronDevice object:

af://n4828

Then go to configuration - Built-in Features tab and enter:

Nr - parameter defining to which input the object refers;

5. Virtual object - Timer

Timers are virtual objects created as part of a given GATE module. Timers can be used wherever it is

necessary to call a method after a specified time or also to call it cyclically.

The timer can operate in two modes:

Countdown After starting, it counts down the set time. At the end of the countdown, the method

associated with the OnTimer event is started, and the timer stops and does not count down until

af://n4837

the next start using the Start method.

Interval Cyclic timer - after the start, it starts counting down the set time. After its expiry, the

timer calls the method associated with the OnTimer event, and the timer itself again begins to

count down the set time. The situation is repeated until it is stopped by the Stop method.

6. Restoring factory settings - Hard Reset

Running the Hard Reset function on the GATE Alarm module causes:

Removal of the saved configuration;

Formatting the flash memory partition;

Removal of all created LUA objects;

Loss of communication between OM / HM and Gate module.

In order to restore the factory settings with the Hard Reset function, perform the following steps (in

accordance with the given order):

Disconnect power from the Gate module

Press and hold the Reset button on the module (the button is located under the bottom end of the

module)

Connect the power supply to the Gate module

Keep the Reset button pressed for at least 10 seconds - during the reset the green LED will be on

steady. Correct completion of the reset will be confirmed by three blinks of the green LED

Release the Reset button after 10 seconds

Wait about 60 seconds until the LED module - green and red - blink alternately (Emergency mode).

After the procedure the module will be cleared, but the module will no longer be visible (no response to

Keep-Alive) in the project from the Object Manager level. To restore the module again, perform CLU

Discovery and then send the configuration.

7. Configuration parameters

Note! The described functionality and integration with these alarm control panels is available for

GRENTON GATE ALARM, DIN, Eth (INT-221-E-01) with firmware 1.1.20-2219 or higher!

A. GATE

FEATURES

af://n4846
af://n4873
af://n4876

Name Description

Uptime Operation time of the device since the last reset (in seconds)

ClientReportInterval Reporting period about changes in features

Date Current date

Time Current time (hh: mm: ss)

Local Time Current local time stamp

Time Zone Time zone

UnixTime Current Unix time stamp

FirmwareVersion Gate software version

UseCloud Specifies whether GATE connects to the cloud

CloudConnection Specifies the status of the GATE connection to the cloud

NTPTimeout Waiting time for response from NTP server

UseNTP Specifies whether GATE uses NTP

PrimaryDNS Preferred DNS server

SecondaryDNS Alternate DNS server

Name Description

SetDateTime Sets the date and time

StartConsole Launches the Lua console

StartConsoleOnReboot Starts the Lua console on restart

SetClientReportInterval Sets the reporting period for feature changes

SetPrimaryDNS Sets the PrimaryDNS feature

SetSecondaryDNS Sets the SecondaryDNS feature

Name Description

OnInit An event dispatched when the device initializes

METHODS

EVENTS

Name Description

State
Central status (0 - no connection to the control panel, 1 - connected to

the control panel)

LastError Last ETHM module error code (0 - ok, 1 - incorrect password)

IP ETHM module IP address (Satel)

Port ETHM module port (Satel)

AdminPassword Satel administrator password

UpdateTime Control panel status update period

EncryptionEnabled Encryption status (true - enabled, false - disabled)

EncryptionKey Satel encryption key

Value

Returns the current status (1 - for armed zone, violated input, output

enabled; 0 - for disarmed zone, normal input, output disabled; -1 - no

information about the state due to no connection)

Nr Parameter defining the zone, input or output to which the object refers

UserPassword User password (will use the administrator password for "_")

Name Description

SetIP Sets the IP address of the ETHM module (Satel)

SetPort Sets the ETHM module port (Satel)

SetAdminPassword Sets an administrator password

SetEncryptionEnabled Enables / disables encryption

SetEncryptionKey Sets the Satel encryption key

ArmZone Arms the zone

DisarmZone Disarms the zone

SetNr
Sets a parameter that defines which zone, zone or output the

object refers to

SetUserPassword Sets the user password (will use the administrator password for _)

SwitchOn Turns on the output

SwitchOff Turns off the output

B. Satel

FEATURES

METHODS

af://n4956

Name Description

OnConnected Event triggered after establishing connection with the control panel

OnDisconnected Event triggered when the connection with the control panel is lost

OnError Event triggered after a control panel error (LastError)

OnChange Event dispatched when the status changes (regardless of the value)

OnSwitchOn Event triggered when the output is switched on or the zone is violated

OnSwitchOff Event triggered when the output is turned off or the input is set to normal

OnArm An event dispatched when the zone is armed

OnDisarm An event dispatched when the area was disarmed

Name Description

AdminCode Administrator access code

State

JablotronSection:

1 - READY - normal operation mode,

2 - ARMED_PART - partial arming of the section,

3 - ARMED - armed section,

4 - SERVICE - service mode included ,

5 - BLOCKED - section blocked,

6 - OFF - section switched off

JablotronOutput:

0 - Output switched on

1 - Output switched off

Nr Parameter defining which input / output / section the object refers to

AccessCode The access code will use the admin code for '*'

Value

Returns the current status:

1 - for armed zone, violated input, output enabled;

0 - for disarmed zone, normal input, output disabled;

-1 - no status information due to lack of connection

EVENTS

C. Jablotron

FEATURES

METHODS

af://n5063

Name Description

SetAccessCode Sets the access code, uses 'admin' for '*'

Arm Arms the zone / section

ArmPartially Partially arm section (Jablotron)

Disarm Disarms the zone / section

SetNr
Sets a parameter that defines which zone, zone or output the object refers

to

SwitchOn Turns on the output

SwitchOff Turns off the output

Name Description

OnStateChange Event dispatched when the status changes (regardless of the value)

OnArm An event dispatched when the section is armed

OnDisarm An event dispatched when the section is disarmed

OnChange Event dispatched when the status changes (regardless of the value)

OnSwitchOn Event triggered when the output is switched on or the zone is violated

OnSwitchOff Event triggered when the output is turned off or the input is set to normal

OnArm An event dispatched when the section is armed

OnDisarm An event dispatched when the section is disarmed

Name Description

Time Counted time (in ms)

Mode Timer mode: 0 - countdown, 1 - cyclical (interval)

State Current timer status: 0 - stopped, 1 - counting

EVENTS

D. Timer

FEATURES

METHODS

af://n5140

Name Description

SetTime Sets the timer time (in ms)

SetMode Sets the operating mode: 0 - count down (countdown), 1 - cyclical (interval)

Start Starts the timer

Stop Stops the timer

Name Description

OnTimer An event triggered when the timer is counted

OnStart An event triggered when the timer is started

OnStop An event triggered when the timer is stopped

EVENTS

XIV. GATE MODBUS module

Note! The described functionality and integration is available for GRENTON GATE MODBUS

MASTER, DIN, Eth (INT-201-E-01) with firmware 1.1.0-2034C or higher!

1. General information

The GATE Modbus module enables the integration of the Grenton system with all devices supporting the

MODBUS RTU standard.

Note! There is no limit to the number of objects for the created virtual objects - the limitation is

the device memory, which is influenced by e.g. level of logic expansion on the module.

Before starting the configuration one must obtain information about the selected Slave device

supporting the MODBUS RTU standard - it will be necessary to know, among other things: device

address, type and address of registers, as well as transmission speed.

2. Module configuration

Note! Before starting any work with the GATE Modbus module, it is necessary to update the

interface database!

2.1. Time setting via NTP server

The GATE Modbus module allows you to set the time using the NTP server, taking into account the time

zone and changing the time (winter / summer). The time is taken automatically from the NTP server

(pool.ntp.org).

There are three features for configuration:

UseNTP - determines whether GATE uses NTP,

NTPTimeout - waiting time for a response from the NTP server,

TimeZone - setting the GATE time zone - 22 zones are available.

Note! Getting the time from an NTP server requires that GATE be in a network that has an

internet connection.

2.2. Modbus virtual object configuration

To perform the correct configuration of the GATE Modbus module it is necessary to:

Create a virtual object Modbus and name it:

af://n5187
af://n5190
af://n5197
af://n5202
af://n5216

Go to Embedded features tab and enter:

DeviceAddress - address of the slave device;

AccessRights - operating mode (Read - reading the value from the register; ReadWrite -

allows saving the value to the set register);

RegisterAddress - address of the supported registry;

TransmissionSpeed - transmission speed;

RefreshInterval - the period of polling the slave device register by GATE Modbus;

ResponseTimeout - Slave device time for response (if it is exceeded, ErrorCode = - 2 is

returned);

Divisor - divisor (for ValueType = Number / Float);

parameters appropriate for the selected slave device type - look up 3.1.

StopBits - sets the number of stop bits: 0 - 1 stop bit 1 - 1.5 stop bits 2 - 2 stop bits

Parity - sets the parity check: 0 - None 1 - Odd 2 - Even

Send configuration and verify connection - tab Embedded features, feature ErrorCode = 0

(correct read / write):

2.3. ModbusValue virtual object configuration

Note! The described virtual object is available for GRENTON GATE MODBUS MASTER, DIN, Eth

(INT-201-E-01) with firmware 1.1.10-2140 or higher!

To use the ModbusValue virtual object:

Create a virtual object ModbusValue and name it:

af://n5255

Go to Embedded features tab and enter:

TransmissionSpeed - transmission speed;

Parity - sets the parity check: 0 - None 1 - Odd 2 - Even

StopBits - sets the number of stop bits: 0 - 1 stop bit 1 - 1.5 stop bits 2 - 2 stop bits

DeviceAddress - address of the slave device;

ResponseTimeout - response timeout in 25ms steps;

RefreshPeriod - minimum refresh period in 5ms steps - 0 means automatic refresh is

disabled;

RegisterAddress - address of the supported registry;

RegisterType - type of the register set: 0 - Discrete outputs / coils 1 - Discrete inputs 2 -

Holding registers 3 - Input registers

Divisor - value divisor (scale);

InitialValueAccess - initial Value access method: 0 - The initial Value and SetValue

parameter are sent to the device; 1 - The initial Value and SetValue parameter are ignoredthe

method of first accessing to the value;

Note!

Entering a value in Value field when setting the InitialValueAccess = 1 feature

causes saving the value (sending the appropriate frame) after sending the

configuration to the CLU. If the value of the InitialValueAccess = 0 feature, the entered

value in Value field is ignored.

parameters appropriate for the selected slave device type - look up 3.2.

Send configuration and verify connection - tab Embedded features, feature ErrorCode = 0

(correct read / write):

3. Parameters of registers

Depending on the type of Slave register, the next available parameters must be set accordingly.

3.1. Virtual object Modbus

af://n5300
af://n5303

A. 16-bit registers

Reading 16-bit holding registers (Read Holding Registers , FunctionCode = 03):

AccessRights : Read;

ValueType : Number;

BitPosition : default value;

BitCount : 16;

Endianness : default value;

RegisterType : HoldingRegisters.

Reading 16-bit input registers (Read Input Registers , FunctionCode = 04):

AccessRights : Read;

ValueType : Number;

BitPosition : default value;

BitCount : 16;

Endianness : default value;

RegisterType : InputRegisters.

af://n5304

Records of 16-bit holding registers (Preset / Write Single Holding Register , FunctionCode =

06):

AccessRights : ReadWrite;

ValueType : Number;

BitPosition : default value;

BitCount : 16;

Endianness : default value;

RegisterType : HoldingRegisters.

B. Fields in 16-bit registers

Reading of bit fields in a 16-bit remembering register (Read Holding Registers , FunctionCode =

03):

AccessRights : Read;

ValueType : Bit;

BitPosition : 0-15 (position of the first interesting bit);

BitCount : 1-16 (number of bits read sequentially);

Endianness : default value;

RegisterType : HoldingRegisters.

af://n5351

Reading of bit fields in a 16-bit input register (Read Input Registers , FunctionCode = 04):

AccessRights : Read;

ValueType : Bit;

BitPosition : 0-15 (position of the first interesting bit);

BitCount : 1-16 (number of bits read sequentially);

Endianness : default value;

RegisterType : InputRegisters.

Writing bit fields in a 16-bit reminder register (Preset / Write Single Holding Register ,

FunctionCode = 06):

AccessRights : ReadWrite;

ValueType : Bit;

BitPosition : 0-15 (position of the first interesting bit);

BitCount : 1-16 (number of bits read sequentially);

Endianness : default value;

RegisterType : HoldingRegisters.

C. 32-bit integer values of registers

Reading 32-bit integer values of the retaining register (Read Holding Registers , FunctionCode =

03):

AccessRights : read;

ValueType : number;

BitPosition : default value;

BitCount : 32;

Endianness : in the case of 32-bit registers, Slaves usually require reordering of bytes and words

- SwapBytesAndWords; detailed information should be found in the slave device card;

RegisterType : HoldingRegisters.

Reading 32-bit integer values of the input register (Read Input Registers , FunctionCode = 04):

AccessRights : Read;

ValueType : Number;

BitPosition : default value;

BitCount : 32;

af://n5398

Endianness : in the case of 32-bit registers, Slaves usually require reordering of bytes and words

- SwapBytesAndWords; detailed information should be found in the slave device card;

RegisterType : InputRegisters.

Writing of 32-bit integers in the remembering register (Preset / Write Multiple Holding

Registers , FunctionCode = 16):

AccessRights : ReadWrite;

ValueType : Number;

BitPosition : default value;

BitCount : 32;

Endianness : in the case of 32-bit registers, Slaves usually require reordering of bytes and words

- SwapBytesAndWords; detailed information should be found in the slave device card;

RegisterType : HoldingRegisters.

D. 32-bit floating point values of registers

Reading of the 32-bit floating point values of the remembering register (Read Holding Registers ,

FunctionCode = 03):

AccessRights : Read;

ValueType : Float;

BitPosition : default value;

BitCount : 32;

Endianness : in the case of 32-bit registers, Slaves usually require reordering of bytes and words

- SwapBytesAndWords; detailed information should be found in the slave device card;

RegisterType : HoldingRegisters.

af://n5445

Reading of 32-bit floating point register values (Read Input Registers , FunctionCode = 04):

AccessRights : Read;

ValueType : Float;

BitPosition : default value;

BitCount : 32;

Endianness : in the case of 32-bit registers, slaves usually require reordering of bytes and words

- SwapBytesAndWords; detailed information should be found in the slave device card;

RegisterType : InputRegisters.

Record of 32-bit floating point values in the reminder register (Preset / Write Multiple Holding

Registers , FunctionCode = 16):

AccessRights : ReadWrite;

ValueType : Float;

BitPosition : default value;

BitCount : 32;

Endianness : in the case of 32-bit registers, slaves usually require reordering of bytes and words

- SwapBytesAndWords; detailed information should be found in the slave device card;

RegisterType : HoldingRegisters.

E. Discrete inputs / outputs

Readout of discrete outputs / bit inputs (Read Coil Status , FunctionCode = 01):

AccessRights : Read;

ValueType : Number;

BitPosition : default value;

BitCount : 1-32;

Endianness : default value;

RegisterType : BinaryInputs.

Readout of discrete binary inputs (Read Discrete Inputs , FunctionCode = 02):

AccessRights : Read;

ValueType : Number;

af://n5492

BitPosition : default value;

BitCount : 1-32;

Endianness : default value;

RegisterType : BinaryInputs.

Writing of discrete outputs / bit inputs (Force / Write Single Coil , FunctionCode = 05; Force /

Write Multiple Coils , FunctionCode = 15):

AccessRights : ReadWrite;

ValueType : Number;

BitPosition : default value;

BitCount : 1-32;

Endianness : default value;

RegisterType : BitOutputsInputs.

3.2. Virtual object ModbusValue

Note! The described virtual object is available for GRENTON GATE MODBUS MASTER, DIN, Eth

(INT-201-E-01) with firmware 1.1.10-2140 or higher!

A. 16-bit integer values of registers

Reading 16-bit holding registers (Read Holding Registers , FunctionCode = 03):

RegisterType : Holding Registers;

DataType : Unsigned Integer;

DataWidth : 16;

Endianness : default value;

BitFieldWidth : default value;

BitFieldPosition : default value.

af://n5539
af://n5542

Reading 16-bit input registers (Read Input Registers , FunctionCode = 04):

RegisterType : Input Registers;

DataType : Unsigned Integer;

DataWidth : 16;

Endianness : default value;

BitFieldWidth : default value;

BitFieldPosition : default value.

Records of 16-bit holding registers (Preset / Write Single Holding Register , FunctionCode =

06):

RegisterType : Holding Registers;

DataType : Unsigned Integer;

DataWidth : 16;

Endianness : default value;

BitFieldWidth : default value;

BitFieldPosition : default value.

B. Fields in 16-bit registers

Reading of bit fields in a 16-bit remembering register (Read Holding Registers , FunctionCode =

03):

RegisterType : Holding Registers;

DataType : Unsigned Integer;

DataWidth : 16;

Endianness : default value;

BitFieldWidth : 0 - 16 (number of bits read sequentially);

BitFieldPosition : 0-15 (position of the first interesting bit).

Note!

The range of the BitFieldWidth feature depends on the setting of the value of the

DataWidth feature.

For DataWidth = 16, the range of the BitFieldWidth feature is [0-16].

At the moment of setting the BitFieldWidth feature to 0 and sending the configuration, the

feature takes the maximum value for the currently set value of the DataWidth feature.

Note! The range of the BitFieldPosition feature depends on the setting of the value of

the DataWidth feature.

For DataWidth = 16, the range of the BitFieldWidth feature is [0-15].

Note!

The BitFieldWidth and BitFieldPosition features are dependent on the DataWidth

feature according to the condition: BitFieldWidth + BitFieldPosition <= DataWidth

For example:

When setting DataWidth and BitFieldWidth = 16 and BitFieldPositon = 15, the

BitFieldWidth will automatically be set to = 1.

For BitFieldWidth = 0, the BitFieldPosition attribute is always 0.

af://n5590

Reading of bit fields in a 16-bit input register (Read Input Registers , FunctionCode = 04):

RegisterType : Input Registers;

DataType : Unsigned Integer;

DataWidth : 16;

Endianness : default value;

BitFieldWidth : 0 - 16 (number of bits read sequentially);

BitFieldPosition : 0-15 (position of the first interesting bit).

Writing bit fields in a 16-bit reminder register (Preset / Write Single Holding Register ,

FunctionCode = 06):

RegisterType : Holding Registers;

DataType : Unsigned Integer;

DataWidth : 16;

Endianness : default value;

BitFieldWidth : 0 - 16 (number of bits read sequentially);

BitFieldPosition : 0-15 (position of the first interesting bit).

C. 32-bit integer values of registers

Reading 32-bit integer values of the retaining register (Read Holding Registers , FunctionCode =

03):

RegisterType : Holding Registers;

DataType : Unsigned Integer;

DataWidth : 32;

Endianness : Big Endian;

BitFieldWidth : default value;

BitFieldPosition : default value.

af://n5652

Reading 32-bit integer values of the input register (Read Input Registers , FunctionCode = 04):

RegisterType : Input Registers;

DataType : Unsigned Integer;

DataWidth : 32;

Endianness : Big Endian;

BitFieldWidth : default value;

BitFieldPosition : default value.

Writing of 32-bit integers in the remembering register (Preset / Write Multiple Holding

Registers , FunctionCode = 16):

RegisterType : Holding Registers;

DataType : Unsigned Integer;

DataWidth : 32;

Endianness : Big Endian;

BitFieldWidth : default value;

BitFieldPosition : default value.

D. Fields in 32-bit registers

Reading of bit fields in a 32-bit remembering register (Read Holding Registers , FunctionCode =

03):

RegisterType : Holding Registers;

DataType : Unsigned Integer;

DataWidth : 32;

Endianness : default value;

BitFieldWidth : 0 - 32 (number of bits read sequentially);

BitFieldPosition : 0-31 (position of the first interesting bit).

Note!

The range of the BitFieldWidth feature depends on the setting of the value of the

DataWidth feature.

For DataWidth = 32, the range of the BitFieldWidth feature is [0-32].

At the moment of setting the BitFieldWidth feature to 0 and sending the configuration, the

feature takes the maximum value for the currently set value of the DataWidth feature.

Note! The range of the BitFieldPosition feature depends on the setting of the value of the

DataWidth feature.

For DataWidth = 32, the range of the BitFieldPosition feature is [0-31].

Note!

The BitFieldWidth and BitFieldPosition features are dependent on the DataWidth

feature according to the condition: BitFieldWidth + BitFieldPosition <= DataWidth

For example:

When setting DataWidth and BitFieldWidth = 32 and BitFieldPositon = 15, the

BitFieldWidth will automatically be set to = 17.

For BitFieldWidth = 0, the BitFieldPosition attribute is always 0.

af://n5699

Reading of bit fields in a 32-bit input register (Read Input Registers , FunctionCode = 04):

RegisterType : Input Registers;

DataType : Unsigned Integer;

DataWidth : 32;

Endianness : default value;

BitFieldWidth : 0 - 32 (number of bits read sequentially);

BitFieldPosition : 0-31 (position of the first interesting bit).

Writing bit fields in a 32-bit reminder register (Preset / Write Single Holding Register ,

FunctionCode = 06):

RegisterType : Holding Registers;

DataType : Unsigned Integer;

DataWidth : 32;

Endianness : default value;

BitFieldWidth : 0 - 32 (number of bits read sequentially);

BitFieldPosition : 0 - 31 (position of the first interesting bit).

E. 32-bit floating point values of registers

Reading of the 32-bit floating point values of the remembering register (Read Holding Registers ,

FunctionCode = 03):

RegisterType : Holding Registers;

DataType : Floating-point;

DataWidth : 32;

Endianness : Big Endian.

For DataType = Floating-point, the BitFieldWidth , BitFieldPosition and Divisor

features are inactive and are always 0!

af://n5761

Reading of 32-bit floating point register values (Read Input Registers , FunctionCode = 04):

RegisterType : Input Registers;

DataType : Floating-point;

DataWidth : 32;

Endianness : Big Endian.

Record of 32-bit floating point values in the reminder register (Preset / Write Multiple Holding

Registers , FunctionCode = 16):

RegisterType : Holding Registers;

DataType : Floating-point;

DataWidth : 32;

Endianness : Big Endian.

F. 64-bit integer values of registers

Reading 64-bit holding registers (Read Holding Registers , FunctionCode = 03):

RegisterType : Holding Registers;

DataType : Unsigned Integer;

DataWidth : 64;

Endianness : default value;

BitFieldWidth : default value;

BitFieldPosition : default value.

Reading 64-bit input registers (Read Input Registers , FunctionCode = 04):

RegisterType : Input Registers;

DataType : Unsigned Integer;

DataWidth : 64;

Endianness : default value;

BitFieldWidth : default value;

af://n5799

BitFieldPosition : default value.

Records of 64-bit holding registers (Preset / Write Single Holding Register , FunctionCode =

06):

RegisterType : Holding Registers;

DataType : Unsigned Integer;

DataWidth : 64;

Endianness : default value;

BitFieldWidth : default value;

BitFieldPosition : default value.

G. Fields in 64-bit registers

Reading of bit fields in a 64-bit remembering register (Read Holding Registers , FunctionCode =

03):

RegisterType : Holding Registers;

DataType : Unsigned Integer;

DataWidth : 64;

Endianness : default value;

BitFieldWidth : 0 - 64 (number of bits read sequentially);

BitFieldPosition : 0-63 (position of the first interesting bit).

Note!

The range of the BitFieldWidth feature depends on the setting of the value of the

DataWidth feature.

For DataWidth = 64, the range of the BitFieldWidth feature is [0-64].

At the moment of setting the BitFieldWidth feature to 0 and sending the configuration, the

feature takes the maximum value for the currently set value of the DataWidth feature.

Note! The range of the BitFieldPosition feature depends on the setting of the value of the

DataWidth feature.

For DataWidth = 64, the range of the BitFieldPosition feature is [0-63].

Note!

The BitFieldWidth and BitFieldPosition features are dependent on the DataWidth

feature according to the condition: BitFieldWidth + BitFieldPosition <= DataWidth

For example:

When setting DataWidth and BitFieldWidth = 60 and BitFieldPositon = 15, the

BitFieldWidth will automatically be set to = 49.

For BitFieldWidth = 0, the BitFieldPosition attribute is always 0.

af://n5846

Reading of bit fields in a 64-bit input register (Read Input Registers , FunctionCode = 04):

RegisterType : Input Registers;

DataType : Unsigned Integer;

DataWidth : 64;

Endianness : default value;

BitFieldWidth : 0 - 64 (number of bits read sequentially);

BitFieldPosition : 0-63 (position of the first interesting bit).

Writing bit fields in a 64-bit reminder register (Preset / Write Single Holding Register ,

FunctionCode = 06):

RegisterType : Holding Registers;

DataType : Unsigned Integer;

DataWidth : 64;

Endianness : default value;

BitFieldWidth : 0 - 64 (number of bits read sequentially);

BitFieldPosition : 0-63 (position of the first interesting bit).

H. 64-bit floating point values of registers

Reading of the 64-bit floating point values of the remembering register (Read Holding Registers ,

FunctionCode = 03):

RegisterType : Holding Registers;

DataType : Floating-point;

DataWidth : 64;

Endianness : Big Endian.

For DataType = Floating-point, the BitFieldWidth , BitFieldPosition and Divisor

features are inactive and are always 0!

af://n5908

Reading of 64-bit floating point register values (Read Input Registers , FunctionCode = 04):

RegisterType : Input Registers;

DataType : Floating-point;

DataWidth : 64;

Endianness : Big Endian.

Record of 64-bit floating point values in the reminder register (Preset / Write Multiple Holding

Registers , FunctionCode = 16):

RegisterType : Holding Registers;

DataType : Floating-point;

DataWidth : 64;

Endianness : Big Endian.

J. Discrete inputs / outputs

Readout of discrete outputs / bit inputs (Read Coil Status , FunctionCode = 01):

RegisterType : Discrete outputs / coils;

InputOutputCount : 1-64 (number of discrete inputs / outputs subject to read / write

operations);

For the Discrete outputs / coils and Discrete Inputs register types the features

DataType , DataWidth , Endianness , BitFieldWidth , BitFieldPosition , Divisor are

inactive and always have the value 0!

Readout of discrete binary inputs (Read Discrete Inputs , FunctionCode = 02):

RegisterType : Discrete Inputs;

af://n5945

InputOutputCount : 1-64 (number of discrete inputs / outputs subject to read / write

operations);

InitialValueAccess : Read.

Writing of discrete outputs / bit inputs (Force / Write Single Coil , FunctionCode = 05; Force /

Write Multiple Coils , FunctionCode = 15):

RegisterType : Discrete outputs / coils;

InputOutputCount : 1-64 (number of discrete inputs / outputs subject to read / write

operations);

InitialValueAccess : Write.

4. Restoring factory settings - Hard Reset

Running the Hard Reset function on the GATE Modbus module causes:

Removal of the saved configuration;

Formatting the flash memory partition;

Removal of all created LUA objects;

Loss of communication between OM / HM and Gate module.

In order to restore the factory settings with the Hard Reset function, perform the following steps (in

accordance with the given order):

Disconnect power from the Gate module;

Press and hold the Reset button on the module (the button is located under the bottom end of the

module);

Connect the power supply to the Gate module;

Keep the Reset button pressed for at least 10 seconds - during the reset the green LED will be on

steady. Correct completion of the reset will be confirmed by three blinks of the green LED.

Release the Reset button after 10 seconds

Wait about 60 seconds until the LED module - green and red - blink alternately (Emergency mode)

After the procedure the module will be cleared, but the module will no longer be visible (no response to

Keep-Alive) in the project from the Object Manager level. To restore the module again, perform CLU

Discovery and then send the configuration.

5. Configuration parameters

Note! The described functionality and integration is available for GRENTON GATE MODBUS

MASTER, DIN, Eth (INT-201-E-01) with firmware 1.1.0-2034C or higher!

A. GATE

FEATURES

af://n5974
af://n6001
af://n6004

Name Description

Uptime Operation time of the device since the last reset (in seconds)

FirmwareVersion Gate software version

PrimaryDNS Preferred DNS server

SecondaryDNS Alternate DNS server

ClientReportInterval Reporting period about changes in features

Date Current date

Time Current time (hh: mm: ss)

Local Time Current local time stamp

Time Zone Time zone

UnixTime Current Unix time stamp

UseCloud Specifies whether GATE connects to the cloud

CloudConnection Specifies the status of the GATE connection to the cloud

NTPTimeout Waiting time for response from NTP server

UseNTP Specifies whether GATE uses NTP

Name Description

StartConsole Launches the Lua console

StartConsoleOnReboot Starts the Lua console on restart

SetClientReportInterval Sets the reporting period for feature changes

SetPrimaryDNS Sets the PrimaryDNS feature

SetSecondaryDNS Sets the SecondaryDNS feature

SetDateTime Sets the date and time

Name Description

OnInit An event dispatched when the device initializes

METHODS

EVENTS

Name Description

DeviceAddress Address of the Slave Modbus device

AccessRights Operating mode: read (0 - reading); read / write (1 - read / write)

RegisterAddress Address of the supported registry

TransmissionSpeed Transmission speed

ValueType Variable type (1 - number; 2 - float ; 3 - bit)

BitPosition Bit position (for bit access to 16-bit registers)

BitCount The number of registry bits to read

RefreshInterval Refresh time

ResponseTimeout Response time

Divisor Divisor

Endianness

The order of bytes and words 7 : No swap (0 - no exchange); Swap

bytes and words (1 - change the order of bytes and words); Swap bytes

(2 - changing the order of bytes within each word); Swap words (3 -

exchange of words)

RegisterType
Modbus register type (0 - bit inputs / outputs, 1 - binary inputs, 2 -

holding registers, 3 - input registers)

ErrorCode

Error code: (- 3 - frame error; - 2 - exceeding the response time; - 1 - out

of date value of the last read out register; 0 - correct reading / writing

of the register; 1 - not allowed function; 2 - not allowed register

number; 3 - unauthorized data value; 4 - damage to the connected

device; 5 - positive confirmation; 6 - no readiness / message removed; 7

- negative confirmation; 8 - memory parity error)

Value Read / write value

RegisterValue Unscaled register value

StopBits

Stop bits:

0 - 1 stop bit

1 - 1.5 stop bits

2 - 2 stop bits

Parity

Parity bit:

0 - None

1 - Odd

2 - Even

B. Object Modbus

FEATURES

METHODS

af://n6084

Name Description

SetDeviceAddress Sets the address of the Slave Modbus device

SetAccessRights Sets the operating mode: reading or reading / writing

SetRegisterAddress Sets the address of the supported registry

SetTransmissionSpeed Sets the transmission speed

SetValueType Sets the type of variable

SetBitPosition Sets the position of the bit

SetBitCount Sets the number of registry bits to read

SetRefreshInterval Sets the refresh time

SetReadWriteTimeout Sets the response timeout

SetDivisor Sets the divisor

SetEndianness Sets the byte order type

SetRegisterType Sets the Modbus register type

SetValue Sets the read / write value

SetStopBits Sets the number of stop bits

SetParity Sets the parity check

Name Description

OnChange Event occuring when the state changes (regardless of the value)

OnError Event occuring when the slave device reports an error

EVENTS

C. Object ModbusValue

Note! The described virtual object is available for GRENTON GATE MODBUS MASTER, DIN, Eth

(INT-201-E-01) with firmware 1.1.10-2140 or higher!

FEATURES

af://n6204

Name Description

TransmissionSpeed Transmission Speed

Parity

Parity bit:

0 - None

1 - Odd

2 - Even

StopBits

Stop bits:

0 - 1 stop bit

1 - 1.5 stop bits

2 - 2 stop bits

DeviceAddress Address of the Slave Modbus device

ResponseTimeout Response timeout in 25ms steps

RefreshPeriod
Minimum refresh period in 5ms steps. 0 means automatic refresh is

disabled

RegisterAddress Address of the supported registry

RegisterType
Modbus register type (0 - Discrete outputs / coils, 1 - Discrete inputs, 2

- Holding registers, 3 - Input registers)

InputOutputCount Specifies the number of discrete I / O that can be read / written

DataType

Value type:

0 - An integer, a fixed-point number or a bit field without a sign bit

1 - An integer, a fixed-point number or a bit field with a sign bit

2 - A floating-point number

DataWidth Data width (from 1 to 4 16-bit registers)

Endianness

Endianness:

0 - Big Endian order of words; Big Endian order of bytes in a word

1 - Little Endian order of words; Big Endian order of bytes in a word

2 - Big Endian order of words; Little Endian order of bytes in a word

3 - Little Endian order of words; Little Endian order of bytes in a word

BitFieldWidth

The number of bits in the bit field. The sum of BitFieldWidth and

Position should be <= DataWidth; 0 means no bit field (full data width

= DataWidth)

BitFieldPosition
The position of the youngest bit of the bit field. The sum of

BitFieldWidth and Position should be < = DataWidth.

Divisor Divisor

InitialValueAccess

Initial Value access method:

0 - The initial Value is read from the device

1 - The initial Value is written to the device

Value Returns the last value read and specifies the initial value

RawValue Unscaled register value

Name Description

IsValueValid Determines whether a value matches the state of an object

ErrorCode

Error code:

1 – illegal function

2 – illegal register number

3 – illegal data value

4 – connected device damaged

5 – positive confirmation

6 – no readiness, message removed

7 – negative confirmation

8 – memory parity error

0 - correct read/write register

-2 - exceeding the response timeout

-3 - frame error (error decoding the frame)

-4 - unexpected reply size

-5 - unexpected reply code

METHODS

Name Description

SetTransmissionSpeed Sets transmission speed

SetParity Sets parity check type

SetStopBits Sets stop bit count

SetDeviceAddress Sets Modbus slave device address

SetResponseTimeout Sets the response timeout in 25ms steps

SetRefreshPeriod
Sets the refresh period in 5ms steps. 0 means automatic refresh is

disabled

SetRegisterAddress Sets the supported register address

SetRegisterType Sets the modbus register type

SetInputOutputCount Sets the number of discrete IOs to be read / written

SetDataType Sets the variable type

SetDataWidth Sets the data width

SetEndianness Sets byte order

SetBitFieldWidth Sets the bit field width. 0 means no bit field (full DataWidth)

SetBitFieldPosition Sets the starting position of the bit field

SetDivisor Sets the divisor

ReadValue
Starts reading from the device. Waits for completion in case of no

OnValueRead

WriteValue Writes a new value to the device

Name Description

OnValueChange
Event occuring after the feature value has been changed or the object

parameters have changed

OnValueRead Event occuring after the read started by the ReadValue method completes

OnError Event occuring when the slave device reports an error

EVENT

XV. GATE HTTP Module

Note! The described functionality and integration is available for GRENTON GATE HTTP, DIN, Eth

(INT-211-E-01) with firmware 1.1.0-2034C or higher!

1. General information

The GATE HTTP module is a device enabling system integration with external sites using the HTTP

protocol, as well as a wide group of devices and external / third-party systems - eg AV devices with

HTTP interfaces.

Note! There is no limit to the number of objects for the created virtual objects - the limitation is

the device memory, which is influenced by e.g. level of logic expansion on the module.

2. Module configuration

Note! Before starting any work with the GATE HTTP module, the interface database update is

required!

Time setting via NTP server

The GATE HTTP module allows you to set the time using the NTP server, taking into account the time

zone and changing the time (winter / summer). The time is taken automatically from the NTP server

(pool.ntp.org).

There are three features for configuration:

UseNTP - determines whether GATE uses NTP,

NTPTimeout - waiting time for a response from the NTP server,

TimeZone - setting the GATE time zone - 22 zones are available.

Note! Getting the time from an NTP server requires that GATE be in a network that has an

internet connection.

2.1. Virtual objects

2.1.1. HTTP Request

For the HttpRequest, for example, the weather service http://api.openweathermap.org is used

According to the example on the openweathermap.org site, the API query looks like this:

API call: http://api.openweathermap.org/data/2.5/weather?q=London&APPID={APIKEY}

HttpRequest - is used to send HTTP (GET, POST) requests to a specific host. Standard content types are

supported, e.g. JSON, XML.

af://n6344
af://n6347
af://n6352
af://n6370
af://n6371
http://api.openweathermap.org/
http://api.openweathermap.org/data/2.5/weather?q=London&APPID=%%207bAPIKEY%%207d

To use the Gate module to receive queries, create an HttpRequest virtual object

The following parameters must be set in the HttpRequest object:

Host: api.openweathermap.org

Path: /data/2.5/weather

QueryStringParams: q=London&APPID={APIKEY}

Method: GET

RequestType: JSON

ResponseType: JSON

Note! The Gate Http object enables TLS encrypted connections. If such a connection is required,

the 'https: //' field should be entered in the Host field at the beginning of the value. If the value is

not specified, the standard http connection will be used.

Note! Gate Http does not support all TLS encrypted connections, so we recommend testing the

connection with the given host.

Note! During the https connection, the time to establish a connection and receive a response from

the host is longer than for the http connection, therefore the value for the Timeout parameter

should be increased.

Note! Features described as not settable are features containing answers. The initial values of

these features should be left unchanged. All operations on these variables should be performed

on scripts (and local variables).

After sending the configuration and calling the SendRequest Method, the StatusCode takes the value

200 (OK).

The received response to the query is kept in ResponseBody. For the JSON ResponseType set, the

response is parsed from json to the table. The feature value is invisible from the OM level. The response

values should be drawn from the response from the script.

2.1.2. Downloading certain values from the received response

(XML, JSON)

Note! The response Response obtained should be assigned to the local variable (in the script).

For example:

local resp = GATE-> httpr_openweather_json-> ResponseBody

Then, in the scripts, you must perform the operation on the variable resp!

Note! Scripts reading the content stored in the ResponseBody must be created in the GATE HTTP

module.

The received responses depending on their type (ResponseType) are properly parsed to the table.

Exemplary value readings are written to local variables (inside the script).

af://n6411

In order to be able to use a variable (eg to display in an application), it should be assigned to global

variables (user's features).

Below are examples of answers in XML and JSON format as well as the method of reading a given value

(in the presented examples the answers from the openweathermap.org weather service were used)

A. JSON:

Example answer (openweathermap.org):

How to read :

Parameter value lon

In a script:

After calling the script 145.77 will be assigned to the local variable (script variable).

Parameter value description

resp = [[

{"coord":

{"lon":145.77,"lat":-16.92},

"weather":[{"id":803,"main":"Clouds","description":"broken

clouds","icon":"04n"}],

"base":"cmc stations",

"main":

{"temp":293.25,"pressure":1019,"humidity":83,"temp_min":289.82,"temp_max":295.3

7},

"wind":{"speed":5.1,"deg":150},

"clouds":{"all":75},

"rain":{"3h":3},

"dt":1435658272,

"sys":

{"type":1,"id":8166,"message":0.0166,"country":"AU","sunrise":1435610796,"sunse

t":1435650870},

"id":2172797,

"name":"Cairns",

"cod":200}

]]

{"coord":

{"lon":145.77,"lat":-16.92},

"weather":[{"id":803,"main":"Clouds","description":"broken

clouds","icon":"04n"}],

"base":"cmc stations",

"main":

{"temp":293.25,"pressure":1019,"humidity":83,"temp_min":289.82,"temp_max":295.3

7},

 local lon = resp.coord.lon

In a script:

After calling the script "broken clouds" will be assigned to the local variable (script variable).

B. XML:

Example answer (openweathermap):

How to read:

The value of the id attribute in the tag city

In a script:

{"coord":

{"lon":145.77,"lat":-16.92},

"weather":[{"id":803,"main":"Clouds","description":"broken

clouds","icon":"04n"}],

"base":"cmc stations",

"main":

{"temp":293.25,"pressure":1019,"humidity":83,"temp_min":289.82,"temp_max":295.3

7},

local description = resp.weather[1].description

resp= [[

<current>

 <city id="2643741" name="City of London">

 <coord lon="-0.09" lat="51.51">

 <country>GB</country>

 <sun rise="2015-06-30T03:46:57" set="2015-06-30T20:21:12">

 </city>

 <temperature value="72.34" min="66.2" max="79.88" unit="fahrenheit"/>

 <humidity value="43" unit="%">

 <pressure value="1020" unit="hPa">

 <wind>

 <speed value="7.78" name="Moderate breeze">

 <direction value="140" code="SE" name="SouthEast">

 </wind>

 <clouds value="0" name="clear sky">

 <visibility value="10000">

 <precipitation mode="no">

 <weather number="800" value="Sky is Clear" icon="01d">

 <lastupdate value="2015-06-30T08:36:14">

</current>

]]

<current>

 <city id="2643741" name="City of London">

 <coord lon="-0.09" lat="51.51">

 <country>GB</country>

<sun rise="2015-06-30T03:46:57" set="2015-06-30T20:21:12">

</city>

After calling the script, 2643741 will be assigned to the local variable (script variable).

The value between the country tag:

In a script:

After calling the script, "GB" will be assigned to the local variable (script variable).

Tag name country

In a script:

After calling the script, the value of "country" will be assigned to the local variable (script variable).

2.2.1. HttpListener

The HttpListener object is used for receiving HTTP (GET, POST) requests. The returned response can be

serialized to one of the standard types including JSON, XML. In the HttpListener object, it is important to

return the response to every incoming Request.

In the case of listening to Request from the Gate module on the query - for example (using an internet

browser):

GET 192.168.4.12/grentontest/xml

You must create the HttpListener virtual object.

local city_id = resp[1].id

 <current>

 <city id="2643741" name="City of London">

 <coord lon="-0.09" lat="51.51">

 <country>GB</country>

 <sun rise="2015-06-30T03:46:57" set="2015-06-30T20:21:12">

 </city>

local country = resp[1][2][1]

<current>

 <city id="2643741" name="City of London">

 <coord lon="-0.09" lat="51.51">

 <country>GB</country>

 <sun rise="2015-06-30T03:46:57" set="2015-06-30T20:21:12">

 </city>

local nameTag = resp[1][2].xmlTag

af://n6469

The following parameters must be set in the HttpListener object:

Path: /grentontest/xml

ResponseType: XML

StatusCode: 200

Note! Features described as not settable are features containing answers. The initial values of

these features should be left unchanged. All operations on these variables should be performed

on scripts (and local variables)

You must create a script for the OnRequest event that will create the correct answer and send it back.

2.2.2. Preparation of the response sent to the server

The response is created in the local resp variable.

After preparing the response, set it for ResponseBody (resp) and then send it using the SendResponse ()

method.

A. XML:

To send the value of a given attribute in response:

The answer you've provided is as follows:

B.JSON:

The answer you've provided is as follows:

2.2.3. Reading key values from the querystringparams

parameter

According to the description of the QueryStringParams feature, its value is not settable, it can be read in

the script. If querystring with keys (keys) is sent in the query, the given value can be read from the

script level - it is saved in the form of a table.

Individual key values can be obtained on the basis of:

local resp ="<clu><temperature>" ..CLUZ->x103478262_ONEW_SENSOR1->Value.."

</temperature></clu>"

GATE_2->Listener_XML->SetResponseBody(resp)

GATE_2->Listener_XML->SendResponse()

local resp = {

Temp = CLUZ->x103478262_ONEW_SENSOR1->Value

}

GATE_2->Listener_JSON->SetResponseBody(resp)

GATE_2-> Listener_JSON->SendResponse()

value1 = qs.klucz1

af://n6489
af://n6503

For the query received:

192.168.1.12/grentontest/query?light1=on&light2=off&light3=on

You must create a script:

All key values will be saved in local variables (test0, test1, test2).

2.3.1. Timer

Timers are virtual objects created as part of a given GATE module. Timers can be used wherever it is

necessary to call a method after a specified time or also to call it cyclically.

Note! It is recommended to use the Timer object when sending queries periodically using the

HttpRequest object.

The timer can operate in two modes:

Countdown After starting, it counts down the set time. At the end of the countdown, the method

associated with the OnTimer event is started, and the timer stops and does not count down until

the next start using the Start method.

Interval Cyclic timer - after the start, it starts counting down the set time. After its expiry, the

timer calls the method associated with the OnTimer event, and the timer itself again begins to

count down the set time. The situation is repeated until it is stopped by the 'Stop' method.

3. The ability to connect to the Gate using TELNET

For the Gate Http module it is possible to view Lua scripts. In case of configuration error (emergency

mode), it is possible to view the error location in the LUA configuration created. The connection is

established using the Telnet protocol - for this purpose, for example, the PuTTY program can be used.

Examples of parameters to establish a connection:

Two methods can be used to call a connection on the Gate side:

local qs = HTTP_L->grentontest_query_listener->QueryStringParams

local test0 = qs.light1

local test1 = qs.light2

local test2 = qs.light3

HTTP_L->grentontest_query_listener->SetResponseBody()

HTTP_L->grentontest_query_listener->SendResponse()

af://n6513
af://n6524

StartConsole – Launches the Lua console. When the method is called, the user has 10s to set

the connection to Gate. If the connection is correct, the information about the correct connection

will be returned on the terminal (client):

StartConsoleOnReboot – allows you to establish a connection the next time Gate reboots. After

reboot, the user has 10s to set the connection to Gate. If the connection is correct, the information

about the correct connection will be returned on the terminal (client)

Note! It is not recommended to assign the StartConsole and StartConsoleOnReboot

methods to the OnInit event of the GATE Http module.

To display eg the value of a given feature on the console, use the Function block component and select

the Print method, and then select the desired feature.

Note! If a Telnet connection between the client <--> GATE has been established, calling the

StartConsole method again will disconnect the current session.

4. Comprehensive integration with external systems
using the GATE Http device

Step-by-step configuration description on the example of a relay output.

CLU SN Telnet session started.

CLU SN initializing...

CLU: running user.lua...

CLU: running om.lua...

CLU: running OnInit...

CLU: Project loaded.

af://n6544

4.1. System

Let's say we have a simple system consisting of the following elements:

CLU Z-Wave - named (Name) "CluZ"

Relay module - for the purpose of using one output called "Relay"

Gate Http - name "GateHttp"

4.2. Output control

In order to enable control of the relay output from an external system, we create a new HttpListener

object on GateHttp and configure it as follows:

Name: RelayControlListener

Path: /relaycontrol

We leave the other parameters unchanged for now.

Script

For the RelayControlListener object to work, create a script that will handle the incoming Http

queries.

Here it is worth noting that from this script we have access to the entire system and all its

functionalities. This opens up virtually unlimited possibilities but also raises some risks, especially if

Gate's functionality is not well thought out. Therefore, we pay special attention that when

implementing Gate's functionality, we should think carefully about the way we want to achieve and how

Gate's operation may depend on or affect other elements of the system. Examples of this approach will

also be discussed further.

Returning to the script controlling Relay. We want to be able to switch Relay on or off by sending him

the expected status (On / Off) or calling the Switch method. This approach to implementation makes

it possible to connect both bistable and monostable switch type control to it.

Going to action, we create a script on GateHttp called RelayControlOnRequest , and in the code

editing mode we put the following:

-- RelayControlOnRequest()

local data = GateHttp->RelayControlListener->QueryStringParams

if data == nil then

 CluZ->Relay->Switch(0)

else

 if data.cmd == "setValue" then

 local val = tonumber(data.val)

 if(val == 1) then

 CluZ->Relay->SwitchOn(0)

 elseif(val == 0) then

 CluZ->Relay->SwitchOff(0)

 end

 end

end

GateHttp->RelayControlListener->StatusCode = 200

GateHttp->RelayControlListener->ResponseBody = "OK"

GateHttp->RelayControlListener->SendResponse()

af://n6546
af://n6556

Next, we assign the script to the OnRequest event of the RelayControlListener object and send

the configuration to the system.

The above script retrieves the query parameter values from the RelayControlListener object and

performs the appropriate actions depending on what is in them. Then sends the status of the operation

back to the client - in this case 200, OK .

Operation can be easily tested using a regular web browser by entering the following URLs (the IP

address should be changed to the actual address of your Http Gateway):

http://192.168.88.4/relaycontrol?cmd=setValue&val=1 - Turns Relay on

http://192.168.88.4/relaycontrol?cmd=setValue&val=0 - Turns Relay Off

http://192.168.88.4/relaycontrol - Switches Relay state

As you can see in the examples, we can use Listener in two ways. If the parameters cmd (command to

be executed) and val (value to be set) are defined properly, they set the specific Relay state. If we

omit these parameters in the URL, the object works like a Switch.

The above example can be further expanded with further commands if other commands are needed. You

can also add further parameters identifying the object on which these commands should be performed.

4.3. Status download

In the previous step, we enabled controlling the object in the system from the outside. Very often, in the

next step, there is a need to provide access to the current state of the object.

One of the faster and most intuitive methods (not necessarily the best) is the definition of another

Listener that will take the value Value from the Relay object and send it to the client. The simplest

script with such functionality may look like this.

By entering the URL below into the browser, we can see that we get a response with the state of the

Relay object (in a simple text form, but it is not the format of sending data that is the subject of this

example).

http://192.168.88.4/relaystate - returns Relay State: 0 or Relay State: 1 depending on

the state of object.

The above example works fine at first glance but let's try to take a closer look.

4.4. Event order

We have just constructed the Http interface (API) having two methods:

/relaycontrol - allows controlling the Relay object

/relaystate - returns the current state (value) of the Relay object

-- RelayStateOnRequest()

GateHttp->RelayState->StatusCode = 200

GateHttp->RelayState->ResponseBody = "Relay State: "..CluZ->Relay->Value

GateHttp->RelayState->SendResponse()

af://n6579
af://n6587

After a quick test, everything works well, but as we wrote above, you still need to consider how such

methods will be used. Namely, it is easy to imagine that in the external system these two methods will

be used right after each other: calling the switching action and after receiving the response, reading the

status to confirm that the action has occurred and synchronizing the status.

And here unexpected system operation can occur - Relay turns on but the returned status is 0, i.e.

invalid. The reason for this is that these operations are performed asynchronously on two different

devices. There is no guarantee that the Relay state change operation will be done before asking about

its state. Calling the state change action in the script RelayControlOnRequest() is invoked

asynchronously, which means that the script does not wait for CluZ to complete the task.

The considered case is very simple and practically always works, but in the case of more complicated

operations (when different target objects are involved, the operation requires the exchange of data,

sending features, etc.) the risk that the status will be retrieved before the actual state of the

object(objects) changes is real and in complex systems we often observe such effects.

4.5. Event synchronization

The above problem can be solved by forcing the script RelayControlOnRequest () to wait for CluZ

to actually execute the state change action on the target device. This can be easily done with the

clu.await () function. E.g. calling:

CluZ->Relay->Switch(0)

we replace with:

clu.await(CluZ->Relay->Switch(0))

(We change the other calls to CluZ in the same way).

From now on, our Listener will not send the confirmation 200, OK until the action on CluZ is actually

done, so the client using this interface will not be misled by too quickly confirming the task.

However, the clu.await () function has a limit. The time limit for making a call is 800ms, and if the

task cannot be completed in that time, the script will end in timeout and the Http client will receive a

Http error: 500 Internal Server Error in response.

In most cases, this timeout is not a problem and the system will work properly but in the case of

complex operations and / or when CluZ will be charged with other tasks it can happen. The way to solve

the problem in this case is described in the next section.

4.6. Feedback confirmation

In complex systems and where we want high reliability and stability of integration, you should delay

Listener Http's response until you receive confirmation from CluZ that the task has been completed.

For clarity, we define a new script and assign it to Listener:

Event OnRequest : GateHttp->SplitSyncOnRequest()

The script SplitSyncOnRequest() looks like this:

-- SplitSyncOnRequest()

local data = GateHttp->RelayControlListener->QueryStringParams

if data == nil then

af://n6598
af://n6608

In each place of the script, when we delegate the task to CluZ (this time through an additional script,

about which in a moment) we end our script without sending an Http response to the client. If the script

execution reaches the final lines, it means that the query could not be interpreted correctly, which

means that it is incorrect and we send back the error 400, Bad request . By the way, we've added

another level of protection against invalid call parameters.

The task is not now as previously performed directly on the target Relay object but delegated to a script

on CluZ named SplitSyncCluzTask (action: string) . The notation used means that the script is

called with a parameter called action , which is of type string - not to be confused with LUA

notation where we do not define the type of the function call parameter. The action parameter

defines the specific action to be called on the Relay object. The operation is identical to the previous

case.

Depending on the action defined, the appropriate method is performed on the Relay object. Finally, we

inform GateHttp that we have completed the task and send the response to the client. A gateHttp

method called SplitSyncRequestCompleted (success: boolean) was created for this purpose,

which takes the boolean parameter: true if the action was successful, false otherwise.

 CluZ->SplitSyncCluzTask("Switch")

 return

else

 if data.cmd == "setValue" then

 local val = tonumber(data.val)

 if(val == 1) then

 CluZ->SplitSyncCluzTask("On")

 return

 elseif(val == 0) then

 CluZ->SplitSyncCluzTask("Off")

 return

 end

 end

end

GateHttp->RelayControlListener->StatusCode = 400

GateHttp->RelayControlListener->ResponseBody = "Bad request"

GateHttp->RelayControlListener->SendResponse()

-- SplitSyncCluzTask(action: string)

if(action == "On") then

 CluZ->Relay->SwitchOn(0)

elseif (action == "Off") then

 CluZ->Relay->SwitchOff(0)

elseif (action == "Switch") then

 CluZ->Relay->Switch(0)

else

 -- Unknown action

 GateHttp->SplitSyncRequestCompleted(false)

 -- Return to avoid double completion

 return

end

GateHttp->SplitSyncRequestCompleted(true)

GateHttp through the above method sends a response to the client informing about success or error

depending on the received parameter. In this way, we implemented the fully synchronous Http method,

which has no time limit for operation. In more advanced cases, you can further improve system

performance by calling the function SplitSyncRequestCompleted (success: boolean) in

response to events informing about a change in the value of a particular object. This ensures that the

change has occurred and further increases the stability of the system.

Note! For data received from external systems, always use the limited trust method as to their

correctness. We recommend not passing directly the values to methods and scripts inside the

system, but using specific actions depending on the method values as seen in the above scripts. If

it is necessary to directly use variables received from outside, they should be transferred via user

variables (which are addressable throughout the Grenton system and can be freely transferred

between CLU devices). In addition, each variable received from the outside should be validated in

the script for correctness, value and scope. Lack of proper verification of the received values may

cause unexpected operation of the system, open access to unwanted functionalities and even

cause errors and the CLU entering Emergency mode.

4.7. Timeout

The created Listener works almost reliably. Why almost? Let's think about what happens if CluZ for

some reason never calls the SplitSyncRequestCompleted (success: boolean) method. GateHttp

is then waiting for the current query to be terminated and stops responding to subsequent queries.

This should not happen on a well-configured system. However, an unexpected situation can always

occur and therefore every element of the system should be configured to operate as independently as

possible and to be resistant to errors in other areas. Therefore, our Listener should also be fully resistant

to such situations.

For this purpose,, we will define a Timer object on GateHttp that will ensure that waiting for CluZ

responses does not last indefinitely. Parameters of the new object:

Name: SplitSyncTimeout

Event OnTimer: GateHttp->SplitSyncTimeoutOnTimer()

Time: 3000 - In this case you should choose the time according to the specific situation, for the

purposes of the example we take 3s (3000ms)

Mode: CountDown

The script executed after the specified time has passed looks like this:

-- SplitSyncRequestCompleted(success: boolean)

if success then

 GateHttp->RelayControlListener->StatusCode = 200

 GateHttp->RelayControlListener->ResponseBody = "OK"

else

 GateHttp->RelayControlListener->StatusCode = 405

 GateHttp->RelayControlListener->ResponseBody = "Not allowed"

end

GateHttp->RelayControlListener->SendResponse()

af://n6626

The script works fairly simply, it returns the error 408, Timeout .

In order for everything to work, the SplitSyncOnRequest () and SplitSync Request Completed

(success: boolean) scripts must be modified accordingly.

Every time we delegate a task to CluZ we start the Timer SplitSyncTimeout .

-- SplitSyncTimeoutOnTimer()

GateHttp->RelayControlListener->StatusCode = 408

GateHttp->RelayControlListener->ResponseBody = "Timeout"

GateHttp->RelayControlListener->SendResponse()

-- SplitSyncOnRequest()

local data = GateHttp->RelayControlListener->QueryStringParams

if data == nil then

 CluZ->SplitSyncCluzTask("Switch")

 GateHttp->SplitSyncTimeout->Start()

 return

else

 if data.cmd == "setValue" then

 local val = tonumber(data.val)

 if(val == 1) then

 CluZ->SplitSyncCluzTask("On")

 GateHttp->SplitSyncTimeout->Start()

 return

 elseif(val == 0) then

 CluZ->SplitSyncCluzTask("Off")

 GateHttp->SplitSyncTimeout->Start()

 return

 end

 end

end

GateHttp->RelayControlListener->StatusCode = 400

GateHttp->RelayControlListener->ResponseBody = "Bad request"

GateHttp->RelayControlListener->SendResponse()

-- SplitSyncRequestCompleted(success: boolean)

if(GateHttp->SplitSyncTimeout->State == 1) then

 GateHttp->SplitSyncTimeout->Stop()

 if success then

 GateHttp->RelayControlListener->StatusCode = 200

 GateHttp->RelayControlListener->ResponseBody = "OK"

 else

 GateHttp->RelayControlListener->StatusCode = 405

 GateHttp->RelayControlListener->ResponseBody = "Not allowed"

 end

 GateHttp->RelayControlListener->SendResponse()

end

However, in the script SplitSyncRequestCompleted (success: boolean) we first check if the

Timer is still in the state 1 (on). It prevents from an unnecessary attempt to send a response when the

timeout has already occurred - the time for response has expired and a response was sent informing

about the occurrence of the error 408, Timeout . If the Timer still works (normal situation, the time

for the answer has not run out), we stop the Timer and continue as before.

4.8. A lot of objects

Let's go back to the method of retrieving Relay's state for a moment. In particular, let's look at the

following line again:

The key here is to get the value of the Value property of the Relay object:

This method works well but be aware that the value of this feature is retrieved when the script is

executed. It results in communication between GateHttp and CluZ via the network. This is a

synchronous call, i.e. the method waits until the response with the value of the Value feature of the

Relay objects is delivered. We already know about some of the limitations of such a call. There are even

more threats in this particular case. Namely, the value of this feature is downloaded every time the

client asks about its value through the Http interface which generates unnecessary traffic in the

system. Additionally, it introduces an unnecessary delay in the system. If there are a lot of such queries,

it can affect system performance. In some especially simple cases this is acceptable and the system will

handle it well. But not always.

Let's imagine that there are many objects in the system and we need to provide the status of all of

them (in the form of JSON or CSV) in response. If in this case we use the same method, then the script

that performs this task may look something like the following:

There can be much more Relay objects in real system. Each line is used to send a request to CluZ for the

Value feature over the network. Collecting the status of all objects may take a lot of time. This delays

the response significantly and blocks GateHttp during the operation.

GateHttp->RelayState->ResponseBody = "Relay State: "..CluZ->Relay->Value

CluZ->Relay->Value

GateHttp->RelayState->StatusCode = 200

local response = CluZ->Relay01->Value

response = response .. "," .. CluZ->Relay02->Value

response = response .. "," .. CluZ->Relay03->Value

response = response .. "," .. CluZ->Relay04->Value

response = response .. "," .. CluZ->Relay05->Value

response = response .. "," .. CluZ->Relay06->Value

response = response .. "," .. CluZ->Relay07->Value

response = response .. "," .. CluZ->Relay08->Value

response = response .. "," .. CluZ->Relay09->Value

response = response .. "," .. CluZ->Relay10->Value

response = response .. "," .. CluZ->Relay11->Value

GateHttp->RelayState->ResponseBody = "System State: ".. response

GateHttp->RelayState->SendResponse()

af://n6648

A series of inquiries occurs whenever the client asks about the state of the system. In most cases, the

value of the feature between queries only changes for one object, the one that has just been changed.

All this causes a lot of unnecessary traffic and negatively affects the speed of the system. From the end

user's point of view, the system may be unstable in such cases, have unexpected delays, hang for short

or long periods and even lose some events.

4.9. Status for the complex system

In order to solve the above problem, you should approach the task of downloading the device status a

bit differently. Later in this section, for simplicity of examples, we will return to a single Relay object,

but the given method will work for virtually any number of objects.

Let's say that instead of asking remotely CluZ about the state of Relay objects, every time the client

asks for it, we could keep its value locally in the GateHttp user variable. Thanks to this, when the client

asks without any delay, we return its value immediately without any delay, let's call it

RelayValueOnGateHttp . What's more, we would like to eliminate all queries that synchronize its value

and receive information only when it is needed, i.e. when the value of the CluZ-> Relay-> Value

feature changes. To achieve this, we assign the following command to the OnValueChange event of

the Relay object:

GateHttp->RelayValueOnGateHttp=CluZ->Relay->Value

Which more or less means: Every time the value of the Value attribute changes, assign to the user

attribute RelayValueOnGateHttp on GateHttp this new value. From now on, we will always have the

current value of the Relay object on the GateHttp side. At the time of inquiry, we simply send this value

to the client. To accomplish this, we modify the RelayStateOnRequest () script as follows:

As mentioned earlier, it can be used for any number of objects and does not cause any negative impact

on system performance because only changes of individual values are communicated when they occur.

4.10. Push Notifications

Going one step further on the road to perfect integration, let's implement one more improvement. So far,

the client himself had to ask every now and then if something did not change in the system. If the

system is to be responsive then such queries must be frequent. Frequent queries generate unnecessary

traffic and increase the risk of delays, especially in handling events very sensitive to delays, such as

switching on the lighting, where the user immediately feels that the action did not take place

immediately after touching the button.

In addition, the customer is not notified immediately about a change in the system, but only when he

asks himself if anything will change.

The solution is the Push state method where the system itself actively sends a notification and

changes the state of the device in the system. In order to implement such a mechanism, we create a

new object on the GateHttp type HttpRequest:

-- RelayStateOnRequest()

GateHttp->RelayState->StatusCode = 200

GateHttp->RelayState->ResponseBody = "Relay State: "..GateHttp-

>RelayValueOnGateHttp

GateHttp->RelayState->SendResponse()

af://n6659
af://n6667

Name: StatePushNotification

Host: IP: The http server port listening for status changes

Path: /statechanged

Method: PUT

Other settings unchanged.

Next we add new script SendStatePushNotification(newValue: number) :

To inform the client about the new status, call the script, specifying as a parameter the new value of the

value attribute. This is best done in the OnValueChange event of the Relay object. Because we

assigned the value to the user variable GateHttp-> RelayValueOnGateHttp a step earlier, we can

use it to avoid unnecessary retransmission of this value. So the assignment will look like this:

GateHttp->SendStatePushNotification(GateHttp->RelayValueOnGateHttp)

Note that copying values to the RelayValueOnGateHttp features must come out earlier.

From now on, whenever the value of the Value feature of a Relay object changes, a notification will

be automatically sent with the new value.

The chosen method sends the new value as the URL parameter, but you can of course format the

answer in any way and send messages in the body by setting the value using the SetRequestBody

(value) method.

Note! Please note that Gate Http opens up unlimited possibilities of cooperation with the system

and you can use it to perform any operation, even malicious. Therefore, it is important that the

Gate Http configuration is carefully thought out and made with the utmost care.

5. Restoring factory settings - Hard Reset

Running the Hard Reset function on the GATE Http module results in:

Removal of the saved configuration;

Formatting the flash memory partition;

Removal of all created LUA objects;

Loss of communication between OM / HM and Gate module.

In order to restore the factory settings with the Hard Reset function, perform the following steps (in

accordance with the given order):

Disconnect power from the Gate module;

Press and hold the Reset button on the module (the button is located under the bottom end of the

module);

Connect the power supply to the Gate module;

Keep the Reset button pressed for at least 10 seconds - during the reset, the green LED will be

permanently illuminated. The correct execution of the reset will be confirmed by a 3-blink green

diode.

Release the Reset button after 10 seconds

Wait about 60 seconds until the LED - green and red - blink alternately (Emergency mode)

-- SendStatePushNotification(newValue: number)

GateHttp->StatePushNotification->SetQueryStringParams("val="..newValue)

GateHttp->StatePushNotification->SendRequest()

af://n6691

Name Description

Uptime Operation time of the device since the last reset (in seconds)

ClientReportInterval Reporting period about changes in features

Date Current date

Time Current time (hh: mm: ss)

Local Time Current local time stamp

Time Zone Time zone

UnixTime Current Unix time stamp

FirmwareVersion Gate software version

UseCloud Specifies whether GATE connects to the cloud

CloudConnection Specifies the status of the GATE connection to the cloud

NTPTimeout Waiting time for response from NTP server

UseNTP Specifies whether GATE uses NTP

PrimaryDNS Preferred DNS server

SecondaryDNS Alternate DNS server

After the procedure the module will be cleared, but the module will no longer be visible (no response to

Keep-Alive) in the project from the Object Manager level. To restore the module again, perform CLU

Discovery and then send the configuration.

6. Configuration parameters

Note! The described functionality and integration is available for GRENTON GATE HTTP, DIN, Eth

(INT-221-E-01) with firmware 1.1.0-2034C or higher!

A. GATE

FEATURES

METHODS

af://n6717
af://n6720

Name Description

StartConsole Launches the Lua console

StartConsoleOnReboot Starts the Lua console on restart

SetClientReportInterval Sets the reporting period for feature changes

SetPrimaryDNS Sets the PrimaryDNS feature

SetSecondaryDNS Sets the SecondaryDNS feature

SetDateTime Sets the date and time

Name Description

OnInit An event dispatched when the device initializes

EVENTS

B. HttpRequest Object

Note! Features described as not settable are features containing answers. The initial values of

these features should be left unchanged. All operations on these variables should be performed

on scripts (and local variables).

FEATURES

af://n6800

Name Description

Host Host adress

Path Query Path

QueryStringParams Query's parameters. \z means lack of parameters

Method The type of method sent in the query, e.g. GET, POST

Timeout Acceptable response timeout

RequestType

The type of content of the query being sent. Defines the content-type

parameter in the query header. Depending on the type selected, the

contents of the RequestBody feature are appropriately serialized:

0 - None - undefined. The content-type is not sent in the header. The

content of the RequestBody feature is not serialized.

1 - Text - content-type: text / plain. The content of the

RequestBody feature is not serialized.

2 - JSON - content-type: application / json. The contents of the

RequestBody feature are serialized to JSON format.

3- XML - content-type: text / xml. The contents of the RequestBody

feature are serialized to XML format.

4 - FormData - content-type: application / x-www-form-urlencoded.

The contents of the RequestBody feature are serialized to the table.

5 - Other - the content type (content-type) is different from the

built-in one. The type can be defined by placing it in the header (the

RequestHeaders attribute). The content is not serialized.

ResponseType

The type of expected answer. Defines the Accept parameter in the

query header. Depending on the type chosen, the content of the

received response (ResponseBody features) is properly parsed into

the table:

0 - None - Accept is not sent in the header of the query being sent.

The answer (feature ResponseBody) is not parsed.

1 - Text - Accept: text / plain. The answer (feature ResponseBody)

is not parsed.

2 - JSON - Accept: application / json. The answer (feature

ResponseBody) is parsed with JSON.

3 - XML - Accept: text / xml. The response (feature ResponseBody)

is parsed from XML.

4 - FormData - Accept: application / x-www-form-urlencoded. The

answer (ResponseBode feature) is parsed.

5 - Other - the Accept parameter of the header is different from the

built-in one. The parameter can be defined by placing it in the header

(the RequestHeaders attribute).

RequestHeaders Additional HTTP query headers. \ z means no content.

RequestBody The content of the message sent in the query. \ z means no content

ResponseBody
The content of the message received after sending the query. (feature

used for reading in scripts - not settable)

Name Description

StatusCode HTTP response status

Name Description

SendRequest Sends the request

AbortRequest Breaks request's service

Clear Deletes request's content

SetHost Sets the host's address

SetPath Sets request's path

SetQueryStringParams Sets query's parameters

SetMethod Sets request's method

SetTimeout Sets acceptable response timeout

SetRequestType Sets the content type of the request being sent (content-type)

SetResponseType Sets the expected request's answer type

SetRequestHeaders Sets additional HTTP request's header

SetRequestBody Sets the request's message content

Name Description

OnRequestSent Event occurring when the request is sent

OnResponse Event occurring when the answer is received

METHODS

EVENTS

C. HttpListener Object

Note! Features described as not settable are features containing answers. The initial values of

these features should be left unchanged. All operations on these variables should be performed

on scripts (and local variables).

FEATURES

af://n6894

Name Description

Path Query path

Method The type of method obtained in the query, e.g. GET , POST

QueryStringParams
Returns HTTP query parameters (feature used for reading in scripts -

not settable)

RequestType

The type of inquiry received. Depending on the type chosen, the

content of the query received (the RequestBody attribute) is properly

parsed into the table:

0 - None - The answer is not parsed.

1 - Text - The answer is not parsed.

2 - JSON - The answer is parsed with JSON.

3 - XML - The answer is parsed from XML.

4 - FormData - The answer is parsed.

5 - Other - The answer is not parsed. The RequestBody feature

returns the contents of an HTTP query (a feature used to read in scripts

- not settable).

RequestBody
Returns the content of the HTTP request (feature used for reading in

scripts - non-persistent)

ResponseType

The content type of the sent response to the query. Defines the

content-type parameter in the response header. Depending on the type

selected, the contents of the ResponseBody feature are appropriately

serialized:

0 - None - undefined. Content-type is not sent in the header. The

content is not serialized.

1 - Text - content-type: text / plain. The content is not serialized.

2 - JSON - content-type: application / json. The RequestBody

content is serialized to JSON format.

3 - XML - content-type: text / xml. The RequestBody content is

serialized to XML format.

4 - FormData - content-type: application / x-www-form-urlencoded.

The RequestBody content is serialized.

5 - Other - the Accept parameter of the header is different from the

built-in one. The parameter can be defined by placing it in the header

(the RequestHeaders attribute).

ResponseBody
Returns the contents of the HTTP response (a feature used to read in

scripts).

Name Description

StatusCode

Status of the HTTP response being sent. Supported statuses:

200 - OK

201 - Created

202 - Accepted

204 - No content

205 - Reset content

400 - Bad request

403 - Forbidden

404 - Not found

405 - Method not allowed

406 - Not acceptable

408 - Request timeout

409 - Conflict

410 - Gone

Name Description

SendResponse Sends the request's response

Clear Deletes response's content

SetPath Sets request's path

SetResponseType Sets the expected request's answer type

SetResponseBody Sets the response's content

SetStatusCode Sets respone's state

Name Description

OnRequest Event occurring when the request is received

Name Description

Time Counted time (in ms)

Mode Timer mode: 0 - count down (countdown), 1 - cyclical (interval)

State Current timer status: 0 - stopped, 1 - counting

METHODS

EVENTS

D. Timer

FEATURES

METHODS

af://n6958

Name Description

SetTime Sets the timer time (in ms)

SetMode Sets the operating mode: 0 - count down (countdown), 1 - cyclical (interval)

Start Starts the timer

Stop Stops the timer

Name Description

OnTimer An event triggered when the timer is counted

OnStart An event triggeredwhen the timer is started

OnStop An event triggeredwhen the timer is stopped

EVENTS

XVI. DALI Controller Module

Note! The described functionality and integration is available for GRENTON DALI Controller DIN,

Eth (INT-202-D-01) with 1.1.11 (build 2048) or higher.

Note! DALI Controller is available for Object Manager in version 1.3.5 (build 204201) and higher,

and for CLU with firmware 5.06.04 (build 2050) and higher.

1. General information

The DALI Controller module acts as a master device, in accordance with the DALI standard, it enables the

operation of 64 ballasts - Control Gears, connected to the DALI bus.

Note! The maximum number of ballasts (DALI_GEAR objects) assigned to one CLU Z-Wave is 128.

DALI Controller allows you to control all light control devices within the scope defined by the PN-EN

62386-102 standard, and the DT8 extension.

The module allows you to control single ballasts, as well as control by groups, each ballast can be

assigned to 16 groups. Thanks to this, it is much easier to organize the lighting control and create

advanced control scenarios.

2. Module configuration

Note! Before starting any work with the DALI Controller module, it is necessary to update the

interface database!

LED signaling

The blue diode indicates the voltage on the DALI bus,

The green diode indicates the current state of the module:

ON – no ballast configuration on module, DALI Discovery must be performed,

Flashes at 200 ms interval – DALI Discovery, the ballasts connected to the DALI bus are

searched and local addresses assigned to them,

Flashes at 1 second interval – ballast configuration is on the module.

Adding a module to the project

After the CLU Discovery process has been executed, two objects appear in the project:

DALI_MASTER - main object used to manage the module configuration,

AnalogIN - object for monitoring the voltage on the system bus.

A. Ballast addressing

The module configuration should start with addressing the DALI ballasts connected to the bus. The DALI

Controller enables two types of addressing: fully automatic or manual.

af://n7005
af://n7010
af://n7017
af://n7041

Automatic addressing allows you to address the entire installation with one click, using the DALI

Discovery process.

In the DALI_MASTER object in the Control tab, call the ResetGear (Broadcast) method and

then the DALI_Discovery method,

The method call initiates the automatic addressing of all ballasts on the bus, which will receive

local addresses in the range 0 to 63. The assignment of an address will be confirmed by lighting

the given luminaire for 300 ms. Please note that all existing addresses will be deleted when

addressing is started. During DALI Discovery, addresses are assigned to the ballasts randomly,

During DALI Discovery:

The green LED on the DALI Controller flashes at 200 ms interval,

The embedded feature State of the DALI_MASTER object takes the value 1.

The duration of the DALI Discovery depends on the number of ballasts (it can take up to several minutes

for the maximum number of devices).

Note! Do not perform any operations on the DALI Controller during DALI Discovery!

Manual addressing allows you to address individual ballasts using the SetLocalAddress method. It

is helpful in the event that the ballast is not found after DALI Discovery, the address is doubled or we

want a specific sequence of addresses in accordance with the assembly order.

In the DALI_MASTER object in the Control tab, call the SetLocalAddress method with the

FindGear parameter set:

WithoutLocalAddress - addressing process for a device without an address,

Address - new unoccupied address that will be given to the device,

WithLocalAddress - addressing process for a device with a given address,

Address - new unoccupied address that will be given to the device,

In both cases, the address assignment will be confirmed by lighting the given luminaire for 300 ms,

During SetLocalAddress :

The green LED on the DALI Controller flashes at 200 ms interval,

The embedded feature State of the DALI_MASTER object takes the value 1.

Note! Do not perform any operations on the DALI Controller during SetLocalAddress !

After the DALI Discovery

The green LED on the DALI Controller flashes every 1 s (ballasts found) or is on continuously (no

ballasts found),

The embedded feature State of the DALI_MASTER object takes the value:

3 - ballasts found,

0 - no ballasts found,

The embedded feature NumberOfGear of the DALI_MASTER returns the number of correctly

found and addressed devices,

The event OnDALI_DiscoveryCompleated is generated.

Operations possible on devices after DALI Discovery has ended

Using the methods of the DALI_MASTER object we can:

Verify the device reporting to the given address - the Identify method,

Restart the device at the given address - the ResetGear method,

Set the value of the luminaire for the device at the given address - the SetDAPCValue method.

B. Adding ballasts to the project

After the ballast addressing process is completed with the DALI_Discovery and SetLocalAddress

methods, CLU Discovery should be performed:

New GEAR objects are added to the project to represent each DALI device (address) correctly found

and added during the addressing process,

The embedded GearAddresses feature of the DALI_MASTER object returns address numbers in

the range 0 - 63, occupied by DALI devices

GEAR objects are in the DALI_GEAR and DALI_GEAR_DT8 - Device Type 8 versions:

DALI_GEAR - all ballasts with basic control methods,

DALI_GEAR_DT8 - ballasts for color control (RGBWA control mode) or color temperature (Tc

control mode).

Note! For correct operation of GEAR configuration and objects, CLU Discovery should be performed

after each change in ballast addressing!

C. Ballast control

The control of a single ballast is carried out using a given DALI_GEAR / DALI_GEAR_DT8 object using

available methods or using the methods of the DALI_MASTER object (detailed functionalities can be

found in the description of individual objects).

The ballast groups are controlled by the DALI_MASTER object using the SetGroupDAPCValue ,

GroupSwitchOn , GroupSwitchOff methods. In order to be able to control a given group of devices, it

is necessary to:

For the desired GEAR objects, set the value of the embedded feature Group . Each object can be

assigned to 16 groups in the range 1 - 16, the next groups are given after a decimal point,

After assigning objects to groups, send the configuration to CLUZ,

After sending the configuration, the groups are sent by the DALI Controller. Embedded feature

State of the DALI_MASTER object takes the value 4. The duration of the process depends on the

number of devices for which the value of the Group feature has been changed, it can last up to

60 seconds,

After correct grouping, the embedded feature of the DALI_MASTER object takes the value 3.

Note! When assigning groups (after CLUZ restart / configuration sending) it is not possible to

control the objects!

D. RampTime

The DALI Controller supports the smooth change of the DAPCValue value using the RampTime

parameter, in a logarithmic manner:

af://n7107
af://n7123
af://n7137

RampTime
Minimum fade time

[s]
Nominal fade time [s] Maximum fade time [s]

1 0,6 0,7 0,8

2 0,9 1,0 1,1

3 1,3 1,4 1,6

4 1,8 2,0 2,2

5 2,5 2,8 3,1

6 3,6 4,0 4,4

7 5,1 5,7 6,2

8 7,2 8,0 8,8

9 10,2 11,3 12,4

10 14,4 16,0 17,6

11 20,4 22,6 24,9

12 28,8 32,0 35,2

13 40,7 45,3 49,8

14 57,6 64,0 70,4

15 81,5 90,5 99,6

Name Description

State

0 - no ballast configuration

1 - DALI Discovery

3 - ballast configuration is on the device

4 - saving information about groups

NumberOfGear Number of ballasts in the device configuration

GearAddresses
Ballast addresses given during DALI_Discovery. The feature value is

refreshed after restart system

3. Objects

A. DALI_MASTER

FEATURES

METHODS

af://n7221
af://n7222

Name Description

Identify Turns on the luminaire for 2 seconds

ResetGear Resets the ballast

SetLocalAddress Sets the local address of the ballast

DALI_Discovery

Searching for ballasts connected to the DALI bus and assigning them

local addresses. At the time of addressing, the ballast is turned on for

300 ms.

No device operations should be performed during DALI_Discovery !

SetDAPCValue
Sets the value of the power with which the luminaire shines.

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

SetGroupDAPCValue

Sets the value of the power with which the luminaire shines for a given

group.

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

GroupSwitchOn
Turns on the luminaire for a given group.

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

GroupSwitchOff
Turns off the luminaire for a given group.

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

Name Description

OnDALI_DiscoveryCompleated
Event occuring after the ballasts have been found and given

local addresses

Name Description

Address Ballast address

Group

Ballast group numbers, subsequent groups from the 1-16 range are given after

the decimal point.

0 - no belonging to any group

DAPCValue The value of the power with which the luminaire shines

EVENTS

B. DALI_GEAR

FEATURES

METHODS

af://n7274

Name Description

Identify Turns on the luminaire for 2 seconds

SetDAPCValue
Sets the value of the power with which the luminaire shines.

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

Switch
Changes the luminaire state to the opposite (0 / 254).

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

SwitchOn
Turns on the luminaire.

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

SwitchOff
Turns off the luminaire.

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

Hold Executes the function of illuminating / dimming the luminaire

HoldUp Executes the function of illuminating the luminaire

HoldDown Executes the function of dimming the luminaire

Name Description

OnDAPCValueChange Event occuring when changing the DAPCValue

OnSwitchOn
Event occuring when the DAPCValue value is changed from 0 to the

greater value

OnSwitchOff Event occuring when the DAPCValue value is changed to 0

EVENTS:

C. DALI_GEAR_DT8

FEATURES

af://n7332

Name Description

Address Ballast address

Group

Ballast group numbers, subsequent groups from the 1-16 range are given

after the decimal point.

0 - no belonging to any group

DAPCValue The value of the power with which the luminaire shines

HSVValue

Brightness value as per the HSV model (range: 0.00-1.00).

The feature does not get the actual brightness of the luminaire! Set

according to called SetHSVValue method.

HSVSaturation

Colour saturation value as per the HSV model (0.00-1.00).

This feature does not get the actual color saturation of the luminaire! Set

according to called SetHSVSaturation method.

HSVHue

Colour hue value as per the HSV model (0-360).

The feature does not get the actual color of the luminaire! Set according to

called SetHSVHue method.

METHODS

Name Description

Identify Turns on the luminaire for 2 seconds

SetDAPCValue Sets the value of the power with which the luminaire shines

Switch
Changes the luminaire state to the opposite (0 / 254).

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

SwitchOn
Turns on the luminaire.

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

SwitchOff
Turns off the luminaire.

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

Hold Executes the function of illuminating / dimming the luminaire

HoldUp Executes the function of illuminating the luminaire

HoldDown Executes the function of dimming the luminaire

SetHSVValue
Sets brightness value (0.00-1.00).

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

SetHSVSaturation
Sets saturation value (0.00-1.00).

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

SetHSVHue
Sets hue value (0-360).

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

SetRGBValue
Sets the value of the R (Red), G (Green), B (Blue) channels.

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

SetWAFValue

Sets the value of the W (White) channel, and the A (Amber) and F

(Freecolor) parameters.

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

SetColourTemperature

Sets the color temperature value, where 0 - physical minimum, 100

- physical maximum.

RampTime parameter set on a logarithmic scale 0.8 - 90 [s]

Name Description

OnDAPCValueChange Event occuring when changing the DAPCValue

OnSwitchOn
Event occuring when the DAPCValue value is changed from 0 to the

greater value

OnSwitchOff Event occuring when the DAPCValue value is changed to 0

EVENTS:

Name Description

Value Current output value taking into account the scalar

Value%
Current percenatage input value of the maximum value (MaxValue

characteristic)

Sensitivity
Minimum change of input state when the OnValueChange , OnValueLower

or OnValueRise event is generated

MinValue
Minimum value of the Value characteristic after exceeding which the

OnOutOfRange event is generated

MaxValue
Maximum value of the Value characteristic after exceeding which the

OnOutOfRange event is generated

Name Description

SetSensitivity Sets input sensitivity value

SetMinValue Sets MinValue

SetMaxValue Sets MaxValue

Name Description

OnValueChange Event resulting from changing input state

OnValueLower
Event occurs when a value lower than the value from the last reading

appears at input

OnValueRise
Event occurs when a value higher than the value from the last reading

appears at input

OnOutOfRange
Event resulting from exceeding the permissible range (MinValue :

MaxValue)

OnInRange Event occurs when value returns to MinValue / MaxValue range

D. AnalogIN

FEATURES

METHODS

EVENTS:

af://n7417

Name Description

Value Returns the input state

HoldDelay
The time after which pressing and holding the button will trigger the

OnHold event

HoldInterval
The cyclic interval (in ms), after which the next OnHold events are triggered

while holding the button

Name Description

SetHoldDelay Sets HoldDelay value

SetHoldInterval Sets HoldInterval value

XVII. Z-Wave modules

This chapter presents a description of the scope of support for other manufacturers' Z-Wave modules,

which are available in the Grenton system.

Note! A full list of devices is available at https://support.grenton.pl/pl/support/solutions in the

article 'Which wireless Z-Wave modules are supported?'

1. Fibaro UBS

Module version: FGBS-001 v2.1.

1.1. General information

The Fibaro UBS Z-Wave module has two potential-free inputs. It allows reading of values from up to four

1-Wire sensors. In addition, it allows you to change the configuration parameters (Fibaro configuration

interface).

Note! Addition / removal is done by clicking the button in the module three times during inclusion

/ exclusion.

1.2. Objects

A. ZWAVE_DIN

Potential-free inputs

FEATURES

METHODS

EVENTS

af://n7473
https://support.grenton.pl/pl/support/solutions
af://n7478
af://n7480
af://n7484
af://n7485

Name Description

OnChange
The cyclic interval (in ms), after which the next OnHold events are triggered

while holding the button

OnSwitchOn An event triggered when the high state is set on input

OnSwitchOff An event triggered when the low state is set on input

OnShortPress The event is triggered after pressing the button for 500-2000ms

OnLongPress The event is triggered after pressing the button for 2000-5000ms

OnHold

Event triggered when the input is in the high state, the first time after the

holdDelay time has elapsed, and then cyclically every HoldInterval

value

OnClick Event triggered after pressing the button for less than 500ms

Name Description

Value The value of the input

MinValue The minimum value of the input

MaxValue The maximum value of the input

Discovered
Information returned during CLU Discovery about connecting the sensor to the

module

B. ZWAVE_1W_SENSOR

The object is responsible for the 1-Wire sensor. A separate object is created for each sensor. Up to 4 1-

Wire sensors (DS18B20) can be connected to the UBS Fibaro module.

ZWAVE_1W_SENSOR objects are always added with the addition of the Fibaro UBS module to the CLU /

project in the OM, regardless of the number of connected sensors. The Discovered feature - informing

whether the Discovery 1-Wire sensor has arrived at Discovery and connected to the UBS module -

informs about whether the sensor is connected.

When connecting or disconnecting the 1-Wire sensors, you must remove and then add the UBS module

to the CLU Z-Wave module. Fibaro UBS module will report the new serial number - it is possible to

rewrite the object configuration (automatic or manual). After adding sensors again, the order of sensors

can be re-indexed to ZW_1W_SENSOR objects.

The Fibaro UBS module for the 1-Wire sensor does not return information if during the system operation

the sensor has been disconnected - the last value collected is stored, therefore it is not recommended to

use these sensors as a source of temperature control.

At the moment of short-circuit on the 1-Wire, all sensors connected to the Fibaro UBS module (available

/ visible in OM) return 0.00 - therefore, with a longer (unplanned) occurrence of this value, check the

correctness of the 1-Wire connection.

FEATURES

EVENTS

af://n7538

Name Description

OnChange An event triggered when the output value is changed

OnRise
Event triggered when the upper hysteresis threshold is exceeded (rising

edge)

OnLower
Event triggered when the lower hysteresis threshold is exceeded (falling

edge)

OnOutOfRange
Event triggered when the output value is outside the specified range

(MinValue : MaxValue)

OnInRange
An event triggered when the value returns to the interval within the

threshold values (MinValue : MaxValue)

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – communication with the module is blocked (banned module).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module.

Register
The register number (parameter) of the configuration that has been read / set

recently using the available methods

Value The value of the configuration register (parameter)

C. ZWAVE_CONFIG

The object displays information about parameters and communication with the module in the Z-Wave

network. It allows setting advanced configuration parameters of a given module (specified individually

in the manual).

FEATURES

METHODS

af://n7582

Name Desctiption

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module. Note! The RemoveBan feature is not

synonymous with the correct communication with the module again - it

allows re-sending an order / query to the module! In case of failure, the

entire blocking process is restarted!

ClearFailCount Clears the number of unsuccessful communication attempts

Set

Sets the value of a given configuration register (parameter): 1 -

Register (register or parameter number), 2 - Value (the value of the

register or parameter), 3 - Size (size of the sent register or parameter

value - in bytes)

Get Gets the value of a given configuration (parameter) register

SetDefault Sets the default value for a given configuration (parameter) register

Name Description

OnBanned An event that is triggered when the device is banned

Name Description

Value Returns the input status: 0 - no violation, 1 - violation

EVENTS

2. NEO Coolcam Motion Sensor (PIR)

Module version: NAS-PD01ZE HW: 66 FW: 3.80

2.1. General information

The Z-Wave Neo Coolcam Motion Sensor module allows you to read: motion sensor status (PIR), light

level and battery level. In addition, it gives you the option of setting / reading the module's wake-up

time.

Note! Addition / removal is done by clicking the button three times in the Neo module during

inclusion / exclusion. Correctly carried out process will be confirmed by a five-fold blink of the

diode.

2.2. Objects

A. BINARY_SENSOR

An object that allows reading the status of the motion sensor.

FEATURES

af://n7633
af://n7635
af://n7639
af://n7640

Name Description

OnChange An event triggered when the status changes to the opposite

OnSwitchOn An event triggered when the high state is set on input

OnSwitchOff An event triggered when the low state is set on input

Name Description

Value The current value of the sensor

MinValue The value below which the OnOutOfRange event is generated

MaxValue The value above which the OnOutOfRange event is generated

Name Description

SetMinValue Sets the low threshold value of the OnOutOfRange event

SetMaxValue Sets the upper threshold value of the OnOutOfRange event

Name Description

OnChange An event triggered when the sensor value is changed

OnValueRaise
An event is triggered when the sensor value changes to a higher one than

the previous one

OnValueDrop
An event triggered when the sensor value is changed to a lower one than the

previous one

OnOutOfRange
An event triggered when one of the threshold values MinValue

/ MaxValue is exceeded

OnInRange
An event triggered when the value returns to the interval within the

threshold values (MinValue : MaxValue)

EVENTS

B. ANALOG_SENSOR

The object allows reading the illumination measured in luxes.

FEATURES

METHODS

EVENTS

af://n7664

Name Description

BatteryLevel Battery level of the Z-Wave module (in percent)

WarningLevel Battery level below which warning events are generated

Name Description

SetWarningLevel Sets the warning level of the Z-Wave module battery

Name Description

OnChange An event triggered when the battery level changes

OnLowBattery An event triggered when a battery drop is detected below the warning level

OnBatteryGood
An event triggered when a battery level returns to a value above the

warning level

Name Description

Interval Time of self-awakening of the Z-Wave module from sleep mode (in seconds)

LastWakeUp Time of the last awakening of the Z-Wave module from sleep mode

Name Description

SetInterval
Sets the time of automatic wake-up of the Z-Wave module from the sleep

mode

C. ZWAVE_BATTERY

The object allows reading the battery status. The reading takes place cyclically, every time set, for the

Interval feature of the ZWAVE_WAKEUP object (3600s by default).

FEATURES

METHODS

EVENTS

D. ZWAVE_WAKEUP

The object enables setting and reading the battery-awakening time of the Z-Wave module. The default

value set by the CLU is 3600s (60 minutes). The minimum value is 300s (5 minutes); maximum

16777200s (about 194 days). It is possible to set values in step 60s (360s, 420s, 480s, etc.)

FEATURES

METHODS

EVENTS

af://n7711
af://n7746

Name Description

OnWakeUp An event triggered when the Z-Wave module wakes up from sleep mode

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Register
The register number (parameter) of the configuration that has been read / set

recently using the available methods

Value

The value of the configuration register (parameter)

Note!*Parameter 2, 3, 5 and 8 refer to the association of modules that is not

supported by the Grenton system!

Note!Parameter 3 - changing the parameter value does not cause sending it

during motion detection!*

Note!*Parameter 4 - correct setting of the parameter value, however the module

itself does not change the operating mode !*

Note!*Parameter 7 and 9 - correct setting of the parameter value, however the

set value has not been tested due to the faulty sensor!*

Note!*Parameter 1, 6 - no noticeable changes in module work after the change

of value!*

Note! Parameter 9 - smaller range of set values (up to 100 lux)!

Note!*There is no information on the register number 11 (Motion Event Report

One Time Enable) in the documentation!*

E. ZWAVE_CONFIG

The object displays information about parameters and communication with the module in the Z-Wave

network. It allows setting advanced configuration parameters of a given module (specified individually

in the manual).

FEATURES

METHODS

af://n7775

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module..

Note! RemoveBan is not synonymous with the correct communication

with the module - it allows re-sending the command / query to the module!

In case of failure, the entire blocking process is restarted!

ClearFailCount Clears the number of unsuccessful communication attempts

Set

Sets the value of a given configuration register (parameter):

Register (register or parameter number),

Value (the value of the register or parameter),

Size (size of the sent register or parameter value - in bytes)

Note!*Calling the Set method must be done after waking up the battery

module! In order to wake up the module, please click the button in the

module three times - after wake up the red LED will blink!*

Get

Gets the value of a given configuration (parameter) register

Note!*Calling the Get method must be done after waking up the battery

module! In order to wake up the module, please click the button in the

module three times - after wake up the red LED will blink!*

SetDefault

Sets the default value for a given configuration (parameter) register

NOTE! Calling the SetDefault method must be done after waking up the

battery module! In order to wake up the module, please click the button in

the module three times - after wake up the red LED will blink!

Name Description

OnBanned An event that is triggered when the device is banned

EVENTS

3. NEO Coolcam Door / Window Sensor

Module version: NAS-DS01Z

3.1. General information

The Z-Wave Neo Coolcam Door / Window Sensor module allows reading the status of the reed (NC) and

the battery level. In addition, it gives you the option of setting / reading the module's wake-up time.

Note! Addition / removal is done by clicking the button three times in the Neo module during

inclusion / exclusion. Correctly carried out process will be confirmed by a five-fold blink of the

diode.

af://n7827
af://n7829

Name Description

Value Returns the input status: 0 - closing, 1 - opening

Name Description

OnChange An event triggered when the status changes to the opposite

OnSwitchOn An event triggered when the high state is set on input

OnSwitchOff An event triggered when the low state is set on input

Name Description

BatteryLevel Battery level of the Z-Wave module (in percent)

WarningLevel Battery level below which warning events are generated

Name Description

SetWarningLevel Sets the warning level of the Z-Wave module battery

Name Description

OnChange An event triggered when the battery level changes

OnLowBattery An event triggered when a battery drop is detected below the warning level

OnBatteryGood
An event triggered when the battery level returns to a value above the

warning level

3.2. Objects

A. BINARY_SENSOR

The object allows reading the reed open / close status.

FEATURES

EVENTS

B. ZWAVE_BATTERY

The object allows reading the battery status. The reading takes place cyclically, every set time, for the

Interval feature of the object ZWAVE_WAKEUP .

FEATURES

METHODS

EVENTS

af://n7833
af://n7834
af://n7858

Name Description

Interval
The period of automatic awakening of the Z-Wave module from the sleep mode

(in seconds)

LastWakeUp Time of the last awakening of the Z-Wave module from sleep mode

Name Description

SetInterval
Sets the period of automatic awakening of the Z-Wave module from the sleep

mode

Name Description

OnWakeUp An event triggered when the Z-Wave module wakes up from sleep mode

C. ZWAVE_WAKEUP

The object enables setting and reading the battery-awakening time of the Z-Wave module. The default

value set by the CLU is 3600s (60 minutes). The minimum value is 300s (5 minutes); maximum

16777200s (about 194 days). It is possible to set values in step 60s (360s, 420s, 480s, etc.)

FEATURES

METHODS

EVENTS

D. ZWAVE_CONFIG

The object displays information about parameters and communication with the module in the Z-Wave

network. It allows setting advanced configuration parameters of a given module (specified individually

in the manual).

FEATURES

af://n7893
af://n7922

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Register
The register number (parameter) of the configuration that has been read / set

recently using the available methods

Value

The value of the configuration register (parameter)

Note!*Parameters 1 and 2 refer to the association of modules, which is not

supported by the Grenton system!*

METHODS

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note! RemoveBan is not synonymous with re-communication with the

module - it allows re-sending an order / query to the module! In case of

failure, the entire blocking process is restarted!

ClearFailCount Clears the number of unsuccessful communication attempts

Set

Sets the value of a given configuration register (parameter):

Register (register or parameter number),

Value (register or parameter value),

Size (size of the sent register or parameter value - in bytes)

Note!*Calling the Set method must be done after waking up the battery

module! In order to wake up the module, please click the button in the

module three times - after wake up the red LED will blink!*

Get

Gets the value of a given configuration (parameter) register

Note!*Calling the Get method must be done after waking up the battery

module! In order to wake up the module, please click the button in the

module three times - after wake up the red LED will blink!***

SetDefault

Sets the default value for a given configuration (parameter) register

NOTE! Calling the SetDefault method must be done after waking up the

battery module! In order to wake up the module, please click the button in

the module three times - after waking up the red LED will blink!

Name Description

OnBanned An event triggered when the device is banned

EVENTS

4. INFIBITY Motion Sensor (PIR) [NEO Coolcam]

Module version: NAS-PD01ZE HW: 66 FW: 3.80

4.1. General information

The Z-Wave Infibity Motion Sensor module enables reading of: motion sensor status (PIR), lighting level,

temperature and battery level. In addition, it gives you the option of setting / reading the module's

wake-up time.

Note! Addition / removal is done by clicking the button three times in the Infibity module during

inclusion / exclusion. Correctly carried out process will be confirmed by a five-fold blink of the

diode.

af://n7973
af://n7975

Name Description

Value Returns the input status: 0 - no violation, 1 - violation

Name Description

OnChange An event triggered when the status changes to the opposite

OnSwitchOn An event triggered when the high state is set on input

OnSwitchOff An event dispatched when the low state is set on input

Name Description

Value The current value of the sensor

MinValue The value below which the OnOutOfRange event is generated

MaxValue The value above which the OnOutOfRange event is generated

Name Descriptrion

SetMinValue Sets the low threshold value of the OnOutOfRange event

SetMaxValue Sets the upper threshold value of the OnOutOfRange event

4.2. Objects

A. BINARY_SENSOR

The object allows reading the status of the motion sensor.

FEATURES

EVENTS

B. ANALOG_SENSOR

The object allows reading the illumination measured in luxes (ANALOG_SENSOR1) and temperature

(ANALOG_SENSOR2).

FEATURES

METHODS

EVENTS

af://n7979
af://n7980
af://n8004

Name Description

OnChange An event triggered when the sensor value is changed

OnValueRaise
An event triggered when the sensor value changes to a higher one than the

previous one

OnValueDrop
An event triggered when the sensor value is changed to a lower one than the

previous one

OnOutOfRange
An event triggered when one of the threshold values MinValue

/ MaxValue is exceeded

OnInRange
An event triggered when the value returns to the interval within the

threshold values (MinValue : MaxValue)

Name Description

BatteryLevel Battery level of the Z-Wave module (in percent)

WarningLevel Battery level below which warning events are generated

Name Description

SetWarningLevel Sets the warning level of the Z-Wave module battery

Name Description

OnChange An event triggered when the battery level changes

OnLowBattery An event triggered when a battery drop is detected below the warning level

OnBatteryGood
An event triggered when the battery level returns to a value above the

warning level

C. ZWAVE_BATTERY

The object allows reading the battery status. The reading takes place cyclically, every set time, for the

Interval feature of the object ZWAVE_WAKEUP (3600s by default).

FEATURES

METHODS

EVENTS

D. ZWAVE_WAKEUP

The object enables setting and reading the battery-awakening time of the Z-Wave module. The default

value set by the CLU is 3600s (60 minutes). The minimum value is 300s (5 minutes); maximum

16777200s (about 194 days). It is possible to set values in step 60s (360s, 420s, 480s, etc.)

FEATURES

af://n8051
af://n8086

Name Description

Interval
The period of automatic awakening of the Z-Wave module from the sleep mode

(in seconds)

LastWakeUp Time of the last awakening of the Z-Wave module from sleep mode

Name Description

SetInterval
Sets the period of automatic awakening of the Z-Wave module from the sleep

mode

Name Description

OnWakeUp An event triggered when the Z-Wave module wakes up from sleep mode

METHODS

EVENTS

E. ZWAVE_CONFIG

The object displays information about parameters and communication with the module in the Z-Wave

network. It allows setting advanced configuration parameters of a given module (specified individually

in the manual).

FEATURES

af://n8115

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Register
The register number (parameter) of the configuration that has been read / set

recently using the available methods

Value

The value of the configuration register (parameter)

Note!*Parameter 2, 3, 5 and 8 refer to the association of modules that is not

supported by the Grenton!

Note!Parameter 1, 6 and 7 - no noticeable changes in the module's work after

the change of value!*

Note!Parameter 9 - smaller range of set values (up to 100 lux)!

METHODS

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note! RemoveBan is not synonymous with the correct communication

with the module again - it allows re-sending an order / query to the

module! In case of failure, the entire blocking process is restarted!

ClearFailCount Clears the number of unsuccessful communication attempts

Set

Sets the value of a given configuration (parameter) register:

Register (register or parameter number),

Value (register or parameter value),

Size (size of the registry value sent or parameter - in bytes)

Note!*Calling the Set method must be done after waking up the battery

module! In order to wake up the module, please click the button in the

module three times - after wake up the red LED will blink!*

Get

Gets the value of a given register (parameter) configuration

Note!*Calling the Get method must be made after waking up the battery

module! In order to wake up the module, please click the button in the

module three times - after waking up the red LED will blink!*

SetDefault

Sets the default value for a given register (parameter) configuration

Note!*Calling the SetDefault method must be done after waking up the

battery module! In order to wake up the module, please click the button in

the module three times - after waking up the red LED will blink!*

Name Description

OnBanned An event triggered when the device is banned

EVENTS

5. INFIBITY Door/Window Sensor [NEO Coolcam]

Module version: NAS-DS01Z HW: 65 FW: 3.61

5.1. General information

The Z-Wave Infibity Door / Window Sensor module allows reading of the status of the reed (NC) and the

battery level. In addition, it gives you the option of setting / reading the module's wake-up time.

Note! Addition / removal is done by clicking the button three times in the Infibity module during

inclusion / exclusion. Correctly carried out process will be confirmed by a five-fold blink of the

diode.

af://n8166
af://n8168

Name Description

Value

Returns the input state:

0 - closing,

1 - opening

Name Description

OnChange An event triggered when the status changes to the opposite

OnSwitchOn An event triggered when the high state is set on input

OnSwitchOff An event triggered when the low state is set on input

Name Description

BatteryLevel Battery level of the Z-Wave module (in percent)

WarningLevel Battery level below which warning events are generated

Name Description

SetWarningLevel Sets the warning level of the Z-Wave module battery

Name Description

OnChange An event triggered when the battery level changes

OnLowBattery An event triggered when a battery drop is detected below the warning level

OnBatteryGood
An event triggered when the battery level returns to a value above the

warning level

5.2. Objects

A. BINARY_SENSOR

The object allows reading the reed open / close status.

FEATURES

EVENTS

B. ZWAVE_BATTERY

The object allows reading the battery status. The reading takes place cyclically, every time set, for the

Interval feature of the ZWAVE_WAKEUP object.

FEATURES

METHODS

EVENTS

af://n8172
af://n8173
af://n8197

Name Description

Interval
The period of automatic awakening of the Z-Wave module from the sleep mode

(in seconds)

LastWakeUp Time of the last awakening of the Z-Wave module from sleep mode

Name Description

SetInterval
Sets the period of automatic awakening of the Z-Wave module from the sleep

mode

Name Description

OnWakeUp An event that is triggered when the Z-Wave module wakes up from sleep mode

C. ZWAVE_WAKEUP

The facility enables setting and reading the battery-awakening time of the Z-Wave module. The default

value set by the CLU is 3600s (60 minutes). The minimum value is 300s (5 minutes); maximum

16777200s (about 194 days). It is possible to set values in step 60s (360s, 420s, 480s, etc.)

FEATURES

METHODS

EVENTS

D. ZWAVE_CONFIG

The object displays information about parameters and communication with the module in the Z-Wave

network. It allows setting advanced configuration parameters of a given module (specified individually

in the manual).

FEATURES

af://n8232
af://n8261

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Register
The register number (parameter) of the configuration that has been read / set

recently using the available methods

Value

The value of the configuration register (parameter)

Note!*Parameters 1 and 2 refer to the association of modules, which is not

supported by the Grenton system!*

METHODS

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note!* RemoveBan is not synonymous with the correct communication

with the module again - it allows re-sending the command / inquiry to the

module! In case of failure, the entire blocking process is restarted!*

ClearFailCount Clears the number of unsuccessful communication attempts

Set

Sets the value of a given configuration register (parameter):

Register (register or parameter number),

Value (the value of the register or parameter),

Size (size of the sent register or parameter value - in bytes)

Note!*Calling the Set method must be done after waking up the battery

module! In order to wake up the module, please click the button in the

module three times - after wake up the red LED will blink!*

Get

Gets the value of a given register (parameter) configuration

Note!*Calling the Get method must be made after waking up the battery

module! In order to wake up the module, please click the button in the

module three times - after waking up the red LED will blink!*

SetDefault

Sets the default value for a given register (parameter) configuration

Note!*Calling the SetDefault method must be done after waking up the

battery module! In order to wake up the module, please click the button in

the module three times - after waking up the red LED will blink!*

Name Description

OnBanned An event triggered when the device is banned

EVENTS

6. INFIBITY Water Sensor [NEO Coolcam]

Module version: NAS-WS02ZU HW: 32 FW: 2.133

6.1. General information

The Z-Wave Infibity Water Sensor module enables reading of the status of the flood sensor and the

battery level. In addition, it gives you the option of setting / reading the module's wake-up time.

Note! Addition / removal is done by clicking the button three times in the Infibity module during

inclusion / exclusion. Correctly carried out process will be confirmed by a five-fold blink of the

diode.

af://n8313
af://n8315

Name Description

Value Returns the input status: 0 - dry, 1 - flooded

Name Description

OnChange An event triggered when the status changes to the opposite

OnSwitchOn An event triggered when the high state is set on input

OnSwitchOff An event triggered when the low state is set on input

Name Description

BatteryLevel Battery level of the Z-Wave module (in percent)

WarningLevel Battery level below which warning events are generated

Name Description

SetWarningLevel Sets the warning level of the Z-Wave module battery

Note! The module in the Object Manager reports as NEO COOLCAM!

6.2. Objects

A. BINARY_SENSOR

The object allows reading the state of the flood sensor.

FEATURES

EVENTS

B. ZWAVE_BATTERY

The object allows reading the battery status. The reading takes place cyclically, every set time, for the

Interval feature of the object ZWAVE_WAKEUP .

FEATURES

METHODS

EVENTS

af://n8323
af://n8324
af://n8349

Name Description

OnChange An event triggered when the battery level changes

OnLowBattery An event triggered when a battery drop is detected below the warning level

OnBatteryGood
An event triggered when the battery level returns to a value above the

warning level

Name Description

Interval
Okres samoczynnego wybudzania modułu Z-Wave z trybu uśpienia (w

sekundach)

LastWakeUp Czas ostatniego wybudzenia modułu Z-Wave z trybu uśpienia

Name Description

SetInterval
Sets the period of automatic awakening of the Z-Wave module from the sleep

mode

Name Description

OnWakeUp An event that is triggered when the Z-Wave module wakes up from sleep mode

C. ZWAVE_WAKEUP

The object enables setting and reading the battery-awakening time of the Z-Wave module. The default

value set by the CLU is 3600s (60 minutes). The minimum value is 300s (5 minutes); maximum

16777200s (about 194 days). It is possible to set values in step 60s (360s, 420s, 480s, etc.)

FEATURES

METHODS

EVENTS

D. ZWAVE_CONFIG

The object displays information about parameters and communication with the module in the Z-Wave

network. It allows setting advanced configuration parameters of a given module (specified individually

in the manual).

FEATURES

af://n8385
af://n8415

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Register
The register number (parameter) of the configuration that has been read / set

recently using the available methods

Value

The value of the configuration register (parameter)

Note!*Parameter 7 refers to the association of modules that is not supported by

the Grenton system!*

METHODS

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note! RemoveBan is not synonymous with the correct communication

with the module again - it allows re-sending the command / inquiry to the

module! In case of failure, the entire blocking process is restarted!

ClearFailCount Clears the number of unsuccessful communication attempts

Set

Sets the value of a given configuration (parameter) register

Register (register or parameter number),

Value (the value of the register or parameter),

Size (size of the sent register or parameter value - in bytes)

Note!*Calling the Set method must be done after waking up the battery

module! In order to wake up the module, please click the button in the

module three times - after wake up the red LED will blink!*

Get

Gets the value of a given configuration (parameter) register

Note!*Calling the Get method must be done after waking up the battery

module! In order to wake up the module, please click the button in the

module three times - after waking up the red LED will blink!*

SetDefault

Sets the default value for a given configuration (parameter) register

Note!*Calling the SetDefault method must be done after waking up the

battery module! In order to wake up the module, please click the button in

the module three times - after wake up the red LED will blink!*

Name Description

OnBanned An event triggered when the device is banned

EVENTS

7. Heiman Smart Smoke Sensor

Module version: HS1SA-Z (HS1SA-Z HW: 255 FW: 1.10)

7.1. General information

The Z-Wave Heiman Smart Smoke Sensor module allows reading: status of the smoke sensor and

battery level. In addition, it gives you the option of setting / reading the module's wake-up time.

Note! Addition / removal is done by clicking the button three times in the HEIMAN module during

inclusion / exclusion. Correctly carried out process will be confirmed by a five-fold blink of the

diode.

af://n8466
af://n8468

Name Description

Value Returns the input status: 0 - no violation, 1 - violation (smoke)

Name Description

OnChange An event triggered when the status changes to the opposite

OnSwitchOn An event triggered when the high state is set on input

OnSwitchOff An event triggered when the low state is set on input

Name Description

BatteryLevel Battery level of the Z-Wave module (in percent)

WarningLevel Battery level below which warning events are generated

Name Description

SetWarningLevel Sets the warning level of the Z-Wave module battery

Note! Module support available on CLU with firmware 04.07.41 (Build 183201) and newer.

7.2. Objects

A. BINARY_SENSOR

The object allows reading the status of the smoke sensor.

FEATURES

METHODS

-

EVENTS

B. ZWAVE_BATTERY

The object allows reading the battery status. The reading takes place cyclically, every set time, for the

Interval feature of the ZWAVE_WAKEUP object.

FEATURES

METHODS

EVENTS

af://n8475
af://n8476
af://n8503

Name Description

OnChange An event triggered when the battery level changes

OnLowBattery An event triggered when a battery drop is detected below the warning level

OnBatteryGood
An event triggered when the battery level returns to a value above the

warning level

Name Description

Interval
The period of automatic awakening of the Z-Wave module from the sleep mode

(in seconds)

LastWakeUp Time of the last awakening of the Z-Wave module from sleep mode

Name Description

SetInterval
Sets the period of automatic awakening of the Z-Wave module from the sleep

mode

Name Description

OnWakeUp An event triggered when the Z-Wave module wakes up from sleep mode

C. ZWAVE_WAKEUP

The object enables setting and reading the battery-awakening time of the Z-Wave module. The default

value set by the CLU is 3600s (60 minutes). The minimum value is 300s (5 minutes); maximum

16777200s (about 194 days). It is possible to set values in step 60s (360s, 420s, 480s, etc.)

FEATURES

METHODS

EVENTS

D. ZWAVE_CONFIG

The object displays information regarding communication parameters with the module in the Z-Wave

network.

FEATURES

af://n8539
af://n8569

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note!* RemoveBan is not synonymous with the correct communication

with the module again - it allows re-sending an order / query to the

module! In the event of failure, the entire blocking process is restarted!*

ClearFailCount Clears the number of unsuccessful communication attempts

Name Description

OnBanned An event triggered when the device is banned

METHODS

EVENTS

8. INFIBITY Siren Alarm [NEO Coolcam]

Module version: NAS-AB01Z HW:48 FW: 2.90

af://n8607

Name Description

Value Returns the output state (0 - low, 1 - high)

Name Description

SetValue Sets the output state as 1 or 0

Switch
Switches the output. The Time parameter determines how long the state change

takes place, for 0 it is constant

SwitchOn
Turns on the output. The Time parameter determines how long the state change

takes place, for 0 it is constant

SwitchOff
Turns off the output. The Time parameter determines how long the state change

takes place, for 0 it is constant

Name Description

OnChange An event triggered when the status changes to the opposite

OnSwitchOn An event triggered when the high state is set to output

OnSwitchOff An event triggered when the low state is set to the output

8.1. General information

Operation of the Infibity Siren Alarm module includes the option of switching on / off the siren signal,

reading the battery level, as well as setting and reading of the module wake up. Additionally, it is

possible to change the configuration parameters.

How to add / remove: Addition / removal is done by clicking the button three times in the INFIBITY

module during inclusion / exclusion. Correctly carried out process will be confirmed by a five-fold blink of

the diode.

Note! After CLU reboot (sending configuration), wait 10s before the first attempt to turn on the

Siren Alarm module.

8.2. Objects

A. ZWAVE_DOUT

The object enables / disables and reads the current state of the siren.

FEATURES

METHODS

EVENTS

af://n8609
af://n8614
af://n8615

Name Description

BatteryLevel Battery level of the Z-Wave module in percent

WarningLevel Battery level below which warning events are generated

Name Description

SetWarningLevel Sets the warning level of the Z-Wave module battery

Name Description

OnChange An event triggered when the battery level changes

OnLowBattery An event triggered when a battery drop is detected below the warning level

OnBatteryGood
An event triggered when the battery level returns to a value above the

warning level

Name Description

Interval
The period of self-awakening of the Z-Wave module from the sleep mode in

seconds

LastWakeUp Time of the last awakening of the Z-Wave module from sleep mode

Name Description

SetInterval
Sets the period of automatic awakening of the Z-Wave module from the sleep

mode

B. ZWAVE_BATTERY

The object allows reading the battery status. The status read is done cyclically every set time for the

Interval feature of the ZWAVE_WAKEUP object

FEATURES

METHODS

EVENTS

C. ZWAVE_WAKEUP

An object enabling setting and reading of the battery Wake Up time of the Z-Wave module. The default

setting value for the CLU is 3600s (5 minutes). The minimum value is 60s (1 minute); maximum

16777200s (about 194 days).

FEATURES

METHODS

EVENTS

af://n8656
af://n8691

Name Description

OnWakeUp An event triggered when the Z-Wave module wakes up from sleep mode

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1).

Note!After restarting the CLU, the Switch Binary Switch command is sent to the

module, to which the module does not respond, so that FailCount is increased

by 1.

Register
The register number (parameter) of the configuration that has been read / set

recently using the available methods

Value The value of the configuration register (parameter)

D. ZWAVE_CONFIG

The object displays information about communication parameters with the module in the Z-Wave

network. It also allows setting advanced configuration parameters of a given module (specified

individually in the manual).

Setting register 7 changes the siren mode:

As an Alarm – the siren operates according to the parameter settings: 1,2,5,8

As a DoorBell – the siren operates according to the parameter settings: 3,4,6,9

FEATURES

METHODS

af://n8720

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note! RemoveBan is not synonymous with the correct communication with

the module again - it allows re-sending an order / query to the module! In

the event of failure, the entire blocking process is restarted!

ClearFailCount Clears the number of unsuccessful communication attempts

Set

Sets the value of a given configuration register (parameter):

Register (register or parameter number),

Value (the value of the register or parameter),

Size (size of the sent register or parameter value - in bytes)

Note!*Calling the Set method must be done after waking up the battery

module! In order to wake up the module, please click the button in the

module three times - after wake up the red LED will blink!*

Get Gets the value of a given configuration (parameter) register

SetDefault Sets the default value for a given configuration (parameter) register

Name Description

OnBanned An event triggered when the device is banned

EVENTS

9. Danfoss Living Connect

Module version: EU HW: 00 FW: 1.1

9.1. General information

The use of the Danfoss Living Connect module includes the possibility of setting the set temperature on

the head, as well as switching on / off the key lock. It is also possible to read the battery level of the

device and to define the module's wake-up period.

How to add / remove: To add / remove a device, 1x click the middle button on the module during

inclusion / exclusion (called on the CLU) - the display backlight will blink quickly and then will turn on

continuously. If after a long time of fast blinking the display backlight starts to blink slower, it means

that the adding process has failed. Before adding the device, one must leave the assembly mode

indicated by "M" in the display.

af://n8777
af://n8779

Name Description

PointValue Returns the set temperature value (4°C ÷ 28°C)

ProtectionState

Returns the key lock status:

0 – off,

2 – on

Name Description

SetPointValue Sets the temperature (PointValue feature)

SetProtectionState Sets the key lock status

Name Description

OnPointValueChange An event triggered when the temperature setpoint is changed

OnProtectionChange An event triggered when the key lock state changes

OnProtectionOn An event triggered when the key lock is activated

OnProtectionOff An event triggered when the key lock is turned off

Name Description

BatteryLevel Battery level of the Z-Wave module in percent

WarningLevel Battery level below which warning events are generated

9.2. Objects

A. ZWAVE_THERMOSTAT

An object that allows setting the temperature on the head as well as switching on/off the key lock.

Note! Operation does not include reading the set temperature using the buttons on the head.

FEATURES

METHODS

EVENTS

B. ZWAVE_BATTERY

The object allows reading the battery status. The status read is done cyclically every set time for the

Interval feature of the ZWAVE_WAKEUP object

FEATURES

METHODS

af://n8782
af://n8783
af://n8826

Name Description

SetWarningLevel Sets the warning level of the Z-Wave module battery

Name Description

OnChange An event triggered when the battery level changes

OnLowBattery An event triggered when a battery drop is detected below the warning level

OnBatteryGood
An event triggered when a battery level returns to a value above the

warning level

Name Description

Interval
The period of self-awakening of the Z-Wave module from the sleep mode in

seconds

LastWakeUp Time of the last awakening of the Z-Wave module from sleep mode

Name Description

SetInterval
Sets the period of automatic awakening of the Z-Wave module from the sleep

mode

Name Description

OnWakeUp An event that is triggered when the Z-Wave module wakes up from sleep mode

EVENTS

C. ZWAVE_WAKEUP

An object enabling setting and reading of the battery Wake Up time of the Z-Wave module. The default

setting for the CLU is 300s (5 minutes). The minimum value is 60s (1 minute); maximum 1800s (30

minutes). It is possible to set the value in step 60s (60s, 120s, 180s, etc.)

FEATURES

METHODS

EVENTS

D. ZWAVE_CONFIG

The object displays information about communication parameters with the module in the Z-Wave

network.

FEATURES

af://n8890

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note! RemoveBan is not synonymous with the correct communication with

the module again - it allows re-sending an order / query to the module! In

the event of failure, the entire blocking process is restarted!

ClearFailCount Clears the number of unsuccessful communication attempts

Name Description

OnBanned An event triggered when the device is banned

METHODS

EVENTS

10. POPP Z-Weather

Module version: EU HW: 01 FW: 1.0

10.1. General information

Handling for the POPP Z-Weather module includes the ability to read climate parameters from the

weather station. It is also possible to read the battery level of the device, as well as to define the

module wake-up period.

af://n8926
af://n8928

Name Description

Temperature Returns the value of the measured air temperature (-10°C ÷ 60°C)

Luminance Returns the value of the measured luminance (0% ÷ 100%)

Humidity Returns the value of the measured relative humidity (0% ÷ 100%)

WindSpeed Returns the value of the measured wind speed (0m/s ÷ 31m/s)

Pressure Returns the value of the measured barometric pressure (600hPa ÷ 1200hPa)

DewPoint Returns the value of the measured dew point temperature (-56,4°C ÷ 60°C)

Name Description

OnTemperatureChange An event triggered when the air temperature changes

OnLuminanceChange An event triggered when the luminance value changes

OnHumidityChange An event triggered when the relative humidity value changes

OnWindSpeedChange An event triggered when the wind speed value changes

OnPressureChange An event triggered when the barometric pressure value changes

OnDewPointChange An event triggered when the dew point value changes

Name Description

BatteryLevel Battery level of the Z-Wave module in percent

WarningLevel Battery level below which warning events are generated

How to add / remove: To add / remove the device, 3x click the button on the module within 1.5s

during inclusion / exclusion (called on the CLU) - the red LED on the module will blink 3x when adding or

1x during deletion.

How to wake up: To wake up the device, click 1x on the device.

10.2. Objects

A. ZWAVE_WEATHER

An object enabling the reading of climatic parameters - temperature, luminance, relative humidity, wind

speed, barometric pressure and dew point temperature.

FEATURES

EVENTS

B. ZWAVE_BATTERY

The object allows reading the battery status. The status read is done cyclically every set time for the

Interval feature of the ZWAVE_WAKEUP object

FEATURES

af://n8932
af://n8933
af://n8981

Name Description

SetWarningLevel Sets the warning level of the Z-Wave module battery

Name Description

OnChange An event triggered when the battery level changes

OnLowBattery An event triggered when a battery drop is detected below the warning level

OnBatteryGood
An event triggered when the battery level returns to a value above the

warning level

Name Description

Interval
The period of self-awakening of the Z-Wave module from the sleep mode in

seconds

LastWakeUp Time of the last awakening of the Z-Wave module from sleep mode

Name Description

SetInterval
Sets the period of automatic awakening of the Z-Wave module from the sleep

mode

Name Description

OnWakeUp An event triggered when the Z-Wave module wakes up from sleep mode

METHODS

EVENTS

C. ZWAVE_WAKEUP

An object enabling setting and reading of the battery Wake Up time of the Z-Wave module. The default

setting for the CLU is 600s (about 10 minutes). The minimum value is 600s (about 10 minutes),

maximum 17180s (about 286 minutes). It is possible to set the value in step 1s (600s, 601s, 602s, etc.)

FEATURES

METHODS

EVENTS

D. ZWAVE_CONFIG

The object displays information about communication parameters with the module in the Z-Wave

network.

FEATURES

af://n9016
af://n9045

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note! RemoveBan is not synonymous with the correct communication

with the module again - it allows re-sending an order / query to the

module! In the event of failure, the entire blocking process is restarted!

ClearFailCount Clears the number of unsuccessful communication attempts

Name Description

OnBanned An event triggered when the device is banned

METHODS

EVENTS

11. FAKRO AMZ Solar

Module version: HW: 31 FW: 1.01:01.01

11.1. General information

Handling of the FAKRO AMZ Solar module includes the possibility of window control - both through the

maximum opening / closing, as well as setting the window opening percentage, changing the operating

mode (also seasonal mode), and defining the parameters operating in a given mode. In addition, it allows

you to change the configuration parameters (Fakro configuration interface).

af://n9081
af://n9083

Name Description

State

Device state:

0 - lack of movement,

1 - upward movement,

2 - downward movement

Percent

Percentage value of the awning opening, where:

0% - window closed,

100% - window opened

Note! The value of the Percent feature is refreshed when the awning

controller completes the work - it should be taken into account when using

this feature eg for the Slider component.

Mode

Device operation mode:

0 - Manual - Manual,

1 - Semiauto - Semiautomatic,

2 - Auto - Automatic

SeasonMode

Seasonal mode of the device

0 - Summer - Summer,

1 - Winter - Winter

Note!*Parameter does not apply to manual mode* Mode = 0

OpeningTime The awning opening time in semi-automatic mode

Sensitivity The sensitivity of the sun exposure level for the awning in automatic mode

How to add / remove: Adding / removing the device is done by pressing the 'P' button on the device

during inclusion / exclusion (called on the CLU).

11.2. Objects

ZWAVE_FAKRO

The object enables controlling the opening of the awning and reading the set opening percentage. It is

possible to set the maximum value (opening / closing) as well as the percentage of the awning opening

(0-100%). In addition, it is possible to set the device operating modes and parameters related to

individual modes of operation.

Note! Information on specific modes of operation can be found in the device documentation

provided by the manufacturer.

FEATURES

Note! The value of the set configuration parameters is refreshed at the time of WakeUp of the

given device (values are taken from the Z-Wave device).

METHODS

af://n9086
af://n9087

Name Description

Up Awning up

Down Awning down

Stop Stop if the awning is in motion

Start Awning up if previously move down, awning down if previously move up

SetPercent Sets the percentage, where 100% - awning opened

SetMode Sets the device's operating mode

SetSeasonMode Sets the seasonal mode

SetOpeningTime Sets the awning opening time

SetSensitivity Sets the sensitivity of the sun exposure level

Name Description

OnChange An event triggered when the window controller state changes

OnUp An event will trigger at the time of changing from Stop to Up

OnDown An event triggered when the state changes from Stop to Down

OnStart An event triggered when the Start command is called

OnStop An event triggered when the Stop command is issued

EVENTS

ZWAVE_CONFIG

The object displays information about communication parameters with the module in the Z-Wave

network. It allows setting advanced configuration parameters of a given module (specified individually

in the manual).

FEATURES

af://n9168

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Register
The register number (parameter) of the configuration that has been read / set

recently using the available methods

Value The value of the configuration register (parameter)

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note!* RemoveBan it is not synonymous with the correct communication

with the module again - it allows re-sending an order / query to the

module! In the event of failure, the entire blocking process is restarted!*

ClearFailCount Clears the number of unsuccessful communication attempts

Set

Sets the value of a given configuration register (parameter):

Register (register or parameter number),

Value (the value of the register or parameter),

Size (size of the sent register or parameter value - in bytes)

Get Gets the value of a given configuration (parameter) register

SetDefault Sets the default value for a given configuration (parameter) register

Name Description

OnBanned An event triggered when the device is banned

METHODS

EVENTS

Name Description

State

Roller state:

0 - Lack of movement

1 - upward movement

2 - downward movement

Percent

The opening percentage of the roller, where:

0% - roller closed,

100% - roller opened

Note! The value of the Percent feature is refreshed when the roller completes

the work - it should be taken into account when using this feature eg for the Slider

component.

Note! Calling the Stop method while roller is in movement does not refresh the

Percent feature

Name Description

Up Roller upward

Down Roller downward

Stop Stop, if roller is in movement

Start Roller up If previously move down, roller down If previously move up

SetPercent Sets the percentage, where 100% - roller opened

12. FAKRO ARF

12.1. General information

Operation of the FAKRO ARF module includes the option of controlling the roller - both the maximum

opening / closing and the setting of the opening percentage of the roller.

How to add / remove: Adding / removing the device is done by pressing the 'P' button on the device

during inclusion / exclusion (called on the CLU).

12.2. Objects

A. ZWAVE_FAKRO

An object that allows you to control the roller and read the set percentage of opening. It is possible to

set the maximum value (opening / closing) as well as giving the percentage of the roller opening (0-

100%).

FEATURES

METHODS

EVENTS

af://n9219
af://n9221
af://n9224
af://n9225

Name Description

OnChange An event triggered when the roller state is changed

OnUp An event triggered when the state changes from Stop to Up

OnDown An event triggered when the state changes from Stop to Down

OnStart An event triggered when the Start command is called

OnStop An event triggered when the Stop command is issued

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note!* RemoveBan is not synonymous with the correct communication

with the module again - it allows re-sending an order / query to the

module! In the event of failure, the entire blocking process is restarted!*

ClearFailCount Clears the number of unsuccessful communication attempts

B. ZWAVE_CONFIG

The object displays information about communication parameters with the module in the Z-Wave

network.

FEATURES

METHODS

EVENTS

af://n9278

Name Description

OnBanned An event triggered when the device is banned

Name Description

State

Device state:

0 - Lack of movement,

1 - opening,

2 - closing

Percent

The percentage of window opening where:

0% - window closed,

100% - window opened

Note! The value of the Percent feature is refreshed when the window

controller finishes the work - it should be taken into account when using this

feature eg for the Slider component.

WaterSensor Value from the rain sensor

13. FAKRO FTP_V

Module version: HW: 25 FW: 1.01:01.01**

13.1. General information

FAKRO FTP_V module support includes window control - both through maximum opening / closing and

setting the percentage of window opening.

How to add / remove: Adding / removing the device is done by pressing the 'P' button on the device

during inclusion / exclusion (called on the CLU).

13.2. Objects

A. ZWAVE_FAKRO

An object that allows you to control the opening of the window and read the set percentage of opening.

It is possible to set the maximum value (opening / closing), and also to give the window's opening

percentage (0-100%).

FEATURES

METHODS

af://n9314
af://n9316
af://n9319
af://n9320

Name Description

Open Opening the window

Close Closing the window

Stop Stop if the window is being opened or closed

Start
Closing the window if it was previously opened, opening the window if it was

previously closed

SetPercent Sets the percentage, where 100% - the window is open

Name Description

OnChange An event triggered when the window controller state changes

OnOpen An event triggered when the state changes from Stop to Open

OnClose An event triggered when the state changes from Stop to Close

OnStart An event triggered when the Start command is called

OnStop An event triggered when the Stop command is called

OnRainChange An event triggered when the sensor state changes to the opposite one

OnRainOn An event triggered when the high state is set on the sensor

OnRainOff An event triggered when the low state is set on the sensor

EVENTS

B. ZWAVE_CONFIG

The object displays information about communication parameters with the module in the Z-Wave

network.

FEATURES

af://n9385

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Register
The register number (parameter) of the configuration that has been read / set

recently using the available methods

Value The value of the configuration register (parameter)

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note!* RemoveBan is not synonymous with the correct communication

with the module again - it allows re-sending an order / query to the

module! In the event of failure, the entire blocking process is restarted!*

ClearFailCount Clears the number of unsuccessful communication attempts

Set

Sets the value of a given configuration register (parameter):

Register (register or parameter number),

Value (the value of the register or parameter),

Size (size of the sent register or parameter value - in bytes)

Get Gets the value of a given configuration (parameter) register

SetDefault Sets the default value for a given configuration (parameter) register

Name Description

OnBanned An event triggered when the device is banned

METHODS

EVENTS

Name Description

Red The value of the R component (0-255) - red

Green The value of the G component (0-255) - green

Blue The value of the B component (0-255) - blue

White The value of the W component (0-255) - white

RampTime

Rise / fall time of the dimmer value change in milliseconds. The value of this

feature affects the actions triggered by CLU - it does not affect the rise / fall time

after pressing the buttons connected directly to the module

Name Description

SetRed Sets the value of the R component (0-255) - red

SetGreen Sets the value of the G component (0-255) - green

SetBlue Sets the value of the B component (0-255) - blue

SetWhite Sets the value of the W component (0-255) - white

SetRampTime Sets the rise / fall time of the dimmer value change

14. Fibaro RGBW

Module version: FGRGBWM-441 v2/5 EU

14.1. General information

The Z-Wave Fibaro RGBW module allows you to read and set the status of individual R, G, B, W output

channels in the range from 0 to 255. In addition, it allows you to change the configuration parameters

(Fibaro configuration interface).

14.2. Objects

A. ZWAVE_RGBW_LED

The object enables setting values (0-255) for individual output channels R, G, B, W. It is also possible to

read these values - e.g. set directly from the button connected to the module.

Note! The value from the attached button is sent when it is released or brought to the minimum /

maximum value!

FEATURES

METHODS

EVENTS

af://n9436
af://n9438
af://n9440
af://n9441

Name Description

OnChange An event dispatched when the dimmer value is changed

OnSwitchOn An event dispatched when the dimmer is switched on

OnSwitchOff An event dispatched when the dimmer is switched off

Name Description

NodeID
Module (node) number in the Z-Wave network (assigned for each Z-Wave module

after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module: 0 -

communication with the module is not blocked, 1 - blocked communication with

the module (banned module). Blocking occurs when 3 consecutive attempts to

communicate with the module fail (incrementing the FailCount feature by 3).

A request is sent to the banned module every 1.5 minutes - if the CLU receives a

response, then the blocking will be removed and it is possible to retry sending

the order to the module

FailCount

Number of failed communication attempts with the Z-Wave module. In the event

of communication failure with the module (no response, confirmation, etc.), the

feature is incremented by 1, then the retry is attempted twice (in 15s intervals).

In case of failure, communication with the module is blocked (Banned = 1)

Register
Number of the configuration register (parameter) that has been recently read /

set using the available methods

Value Value of the configuration register (parameter)

B. ZWAVE_CONFIG

The object displays information regarding parameters and communication with the module in the Z-

Wave network. It allows you to set advanced configuration parameters for a given module (specified

individually in the manual).

Note! For Fibaro RGBW modules already added to the project - the ZWAVE_CONFIG object will be

added only when the module is completely removed from the project and after CLU Discovery.

FEATURES

METHODS

af://n9499

Name Description

RemoveBan

Removes the blocking of communication with the Z-Wave module (in case

the Banned = 1 feature). Calling the method enables the command to be

sent again to the module.

Note! The RemoveBan feature is not synonymous with correct correct

communication with the module again - it allows you to resend the

command / query to the module! In case of failure the whole blocking

process is restarted!

ClearFailCount Clears the number of failed communication attempts

Set

Sets the value of a given configuration register (parameter):

1 - Register (register or parameter number),

2 - Value (register or parameter value),

3 - Size (size of sent register value or parameter - in bytes)

Get Gets the value of the given configuration register (parameter)

SetDefault Sets the default value for a given configuration register (parameter)

Name Description

OnBanned An event dispatched when the device is banned

EVENTS

15. Remotec ZXT-120

Module version: ZXT-120EU V1.0

15.1. General information

The handling of the Remotec ZXT-120 module includes the possibility of learning and sending IR code,

defining transmission parameters and reading the learning status of a given code by the device. It is

also possible to define the module wake-up period.

How to add / remove: 1x click the PROG button in the module during inclusion / exclusion - the red

LED will flash 1x and then it will turn on continuously.

How to restore the device to factory settings: hold down the PROG button on the device for 10

seconds. After about 5 seconds, the red LED will light up and then start blinking twice at the end of the

process (about 10 seconds).

15.2. Description of device configuration

The device can be configured in two ways:

1. Teaching your own IR codes

2. Use from the list of pre-defined codes available in the internal IR code library

af://n9552
af://n9554
af://n9558

A. The way of teaching IR codes

1. Learning codes is done using the main object ZWAVE_IR1

2. Call the method SetAcDeviceNumber with the parameter AcDeviceNumber equal to '0000' -

sets the device in the mode of teaching new codes (outside the pre-defined list). After calling the

method, the LED diode will blink 2x on the module.

3. Call the LearnCode method giving the IR code number from the range 0-22 under which we want

the code to be saved. After calling the method, the LED on the device should go out and light up

again.

4. Within 15 seconds, press and hold the remote control button that you want to learn by pointing

the remote control towards the top of the device at a distance of 1-3 cm.

If the IR code is programmed correctly, the LED on the device should blink 2x.

In case of failure, the LED on the device should blink 6x.

The learning status can also be read from the LearningStatus parameter. In addition, appropriate

events are generated depending on the learning status (OnLearning , OnLearningOK ,

OnLearningFail)

Note! The position of the remote control relative to the device during learning is crucial. It is

recommended that the remote control is stationary relative to the device when the button is

pressed. Incorrect position can cause the stored code to be incorrect despite the correct learning

status.

Note! Memory of learned codes is saved after disconnecting the device's power supply. This

memory is cleared after changing the AC device number and after removing the device from the Z-

Wave network.

B. The way of sending IR codes

1. Call the SendCode method specifying the number of the learned IR code from the range 0-22.

2. After calling the method, the LED on the device should go out and light up again and the assigned

code is sent to the target device.

Note! The external transmitter has very low power and a small angle of light, so they should be

placed near the IR receiver of the controlled device and properly directed. The light direction of

the IR transmitters is consistent with the axis of the cable entering the IR transmitter housing.

Note! It is recommended not to change the AC device number (AcDeviceNumber feature) if you do

not use the internal IR code of the device.

15.3. Objects

af://n9565
af://n9586
af://n9597

Name Description

AcDeviceNumber
Returns the number of the AC device from the internal library of IR

codes (number from the ZXT-120 Code List)

EmitterPower

Returns the power of the external (connected) infrared transmitter:

0 – normal power

255 – high power

LearningStatus

Returns the status of learning the IR codes:

0 – IR channel idle,

1 – learning successful,

2 – the learning procedure is in progress,

4 – learning failed

SurroundIrControl

Multidirectional IR signal transmission:

0 - Disabled,

255 - Enabled

Name Description

SendCode

Sends an IR code with a specific number (code number in the range

0-22, learned or available in the internal IR code library for a given

AC device)

LearnCode
Invokes the learning mode of the IR code with a specific number

(code number in the range 0-22)

SetAcDeviceNumber
Sets the AC device number from the internal IR code library (number

from the ZXT-120 Code List)

SetEmitterPower Sets the power of the external infrared transmitter

SetSurroundIrControl Sets the multidirection of the IR signal

A. ZWAVE_IR

The object allows reading and writing of configuration parameters and sending IR codes.

FEATURES

Note! The value of the set configuration parameters is refreshed at the time of WakeUp of the

given device (values are taken from the Z-Wave device). For the time of configuring the device

parameters (SetAcDeviceNumber , SetEmitterPower , SetSurroundIrControl) and correct

reading of the set features, it is possible to set the WakeUpInterval` time for less than 60s. After

making changes and completing the configuration of the above parameters, change the waking

time to at least 60s.

METHODS

EVENTS

af://n9598

Name Description

OnIrSend An event triggered when the IR code is sent

OnLearningStatusChange
An event triggered when the status of the IR code learning mode

changes

OnLearningOK
An event triggered when the status of learning the IR code

changes to "OK"

OnLearning
An event triggered when the IR learning mode status changes to

"Learning"

OnLearningFail
An event triggered when the IR learning mode status changes to

"Learning Fail"

Name Description

BatteryLevel Battery level of the Z-Wave module in percent

WarningLevel Battery level below which warning events are generated

Name Description

SetWarningLevel Sets the warning level of the Z-Wave module battery

Name Description

OnChange An event triggered when the battery level changes

OnLowBattery An event triggered when a battery drop is detected below the warning level

OnBatteryGood
An event triggered when the battery level returns to a value above the

warning level

B. ZWAVE_BATTERY

The object allows reading the battery status. The status read is done cyclically every set time for the

Interval feature of the ZWAVE_WAKEUP object

FEATURES

METHODS

EVENTS

C. ZWAVE_WAKEUP

An object that allows setting and reading the reading time of the Z-Wave module parameters. The

default setting value for the CLU is 3600s (60 minutes). The minimum value is 10s, maximum

16777200s (about 194 days). It is possible to set the value in step 5s.

af://n9659
af://n9694

Name Description

Interval
The period of self-awakening of the Z-Wave module from the sleep mode in

seconds

LastWakeUp Time of the last awakening of the Z-Wave module from sleep mode

Name Description

SetInterval
Sets the period of automatic awakening of the Z-Wave module from the sleep

mode

Name Description

OnWakeUp An event triggered when the Z-Wave module wakes up from sleep mode

Note! It is not recommended to set the value of the WakeUp feature less than 60s during normal

device operation. Decreasing the value may be useful only in the case of 'teaching' codes by the

device (generating changes in the status of learning mode, as well as reading the

LearningStatus feature), as well as in setting configuration parameters

FEATURES

METHODS

EVENTS

D. ZWAVE_CONFIG

The object displays information about communication parameters with the module in the Z-Wave

network.

FEATURES

af://n9725

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information of blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount feature by 3). A query is sent to the

banned module every 1.5 minutes - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note!* RemoveBan it is not synonymous with the correct communication

with the module again - it allows re-sending an order / query to the

module! In the event of failure, the entire blocking process is restarted!*

ClearFailCount Clears the number of unsuccessful communication attempts

Name Description

OnBanned An event triggered when the device is banned

METHODS

EVENTS

16. Remotec ZXT-310

Module version: ZXT-310EU HW: 00 FW: 1.10

16.1. General information

The support of the ZXT-310 Remotec module includes handling for learning and sending IR code,

defining transmission parameters and reading the learning status of a given code by the device. It is

also possible to define the module's wake-up period.

af://n9761
af://n9763

How to add / remove: 1x click the PROG button in the module during inclusion / exclusion - the red

LED will flash 1x and then will turn on continuously. If the LED blinks 6x, it means that the adding

process has failed.

How to restore the device to the factory settings: hold down the PROG button device for 10

seconds. After the procedure, the red LED should turn off and turn on again.

Port 1 is the internal IR LEDs of the device. Ports 2-6 are the external IR ports of the device, to which

the cables connected to the set with IR transmitters are connected.

16.2. Device configuration

A. The way of teaching IR codes

1. Learning codes is done using the main object ZWAVE_IR1

2. Select the Endpoint to which codes will be assigned by calling the SetEndpointNumber method.

Each Endpoint has a representation in the form of an object (ZWAVE_IR_EP1, ... ZWAVE_IR_EP6)

3. Call the LearnCode method giving the IR code number between 1-384 at which we want the

code to be saved. After calling the method, the LED on the device should turn off and light up

again.

4. Within 15 seconds, press and hold the button on the remote control that you want to learn by

pointing the remote control towards the "L" mark on the unit's casing at a distance of 1-3 cm.

If the IR code is programmed correctly, the LED on the device should blink 2x.

In case of failure, the LED on the device should blink 6x.

The learning status can also be read from the LearningStatus parameter. In addition, appropriate

events are generated depending on the learning status (OnLearning , OnLearningOK ,

OnLearningFail , OnCommandFull)

Learning codes must be done for each endpoint separately. The maximum number of codes you can

remember is 6 * 64.

Note! The position of the remote control relative to the device during learning is crucial. It is

recommended that the remote control is stationary relative to the device when the button is

pressed. Incorrect position can cause the stored code to be incorrect despite the correct learning

status.

Note! Memory of learned codes is saved after disconnecting the device's power supply. This

memory is cleared after changing the AV device number and after removing the device from the

Z-Wave network.

B. The method of sending IR codes

1. Call the SendCode method specifying the number of the learned IR code from 1-384.

2. After calling the method, the LED on the device should go out and light up again, and the assigned

code is sent to the target device.

Note! Sending codes can be performed for each of the six endpoints directly by selecting one of

the ZWAVE_IR_EP objects or indirectly by selecting the ZWAVE_IR object and configuring the

endpoint number.

af://n9768
af://n9769
af://n9791

C. Endpoints configuration

Endpoints (ZWAVE_IR_EP1, ZWAVE_IR_EP2, itd.) can be configured in two ways:

indirectly through a common ZWAVE_IR object - in this case, first set the endpoint number, which

will be configured using the SetEndpointNumber method.

directly through individual ZWAVE_IR_EP objects coherent to individual endpoints. For a common

ZWAVE_IR object

You can assign a different IR port to each endpoint. There are 6 IR ports available. By default, port 1 is

assigned to all endpoints. Port 1 is the device's internal IR LEDs. Ports 2-6 are the external IR ports of

the device, to which the cables connected to the set with IR transmitters are connected.

After assigning an IR port to a given endpoint, you can set other parameters such as IR power (external

transmitters only) and transmission mode.

Note! External transmitters have very low power and a small lighting angle, so they should be

available near the IR receiver of the controlled device and properly directed. The light direction of

the IR transmitters is coherent with the axis of the cable entering the IR transmitter housing.

Note! It is recommended not to change the AV device number (feature AvDeviceNumber) if you

do not use the internal IR code of the device.

16.3. Objects

A. ZWAVE_IR

The object enables reading and writing configuration parameters of the previously selected endpoint

and sending IR codes via this defined endpoint.

FEATURES

af://n9799
af://n9812
af://n9813

Name Description

PortRouting
Returns the IR port number assigned to the currently selected endpoint

(1 - internal IR port, 2 ÷ 6 - external IR ports)

AvDeviceNumber

Returns the number of the AV device from the internal IR code library

assigned to the currently selected endpoint (four-digit number from the

ZXT-310 Code List)

EmitterPower

Returns the power of the external infrared transmitter to the set IR port:

0 – normal power

255 – high power

Note!*Parameter EmmitterPower it is not configurable for port 1*

TransmissionMode

Returns the IR code transmission mode:

0 – continuous transmission,

255 – single pulse

EndpointNumber Returns the number of the controlled endpoint (1 ÷ 6)

FirmwareVersion Returns the version number of the software

LibraryVersion Returns the version number of the built-in IR code library

LearningStatus

Returns the status of learning IR codes:

0 – IR channel idle,

1 – learning successful,

2 – learning procedure on progress,

3 – the maximum number of codes for a given Endpoint has been

reached,

4 – learning failed

Note! The value of the set configuration parameters is refreshed at the time of WakeUp of the

given device (values are taken from the Z-Wave device). For the time of configuration of the

device parameters (SetAvDeviceNumber , SetEmitterPower , SetTransmissionMode ,

SetPortRouting) and correct reading of set features, it is possible to set the WakeUpInterval

time for less than 60s. After making changes and completing the configuration of the above

parameters, change the waking time to at least 60s.

METHODS

Name Description

SendCode

Sends an IR code with a specific number (code number in the 1-384

range, learned or available in the internal IR code library for the given

AV device)

LearnCode
Invokes the learning mode of the IR code with a specific number

(code number in the 1-384 range)

SetPortRouting
Sets the IR port number to be assigned to the currently selected

endpoint

SetAvDeviceNumber

Sets the AV device number from the internal IR code library assigned

to the currently selected endpoint (four-digit number from the ZXT-

310 Code List)

SetEmitterPower

Sets the power of the external infrared transmitter

Note!*Parameter EmmitterPower is not configurable for port 1*

SetTransmissionMode Sets the IR code transmission mode

SetEndpointNumber Sets the endpoint number to be controlled (1 ÷ 6)

Name Description

OnIrSend An event triggered when the IR code is sent

OnLearningStatusChange
An event triggered when the status of the IR code learning mode

changes

OnLearningOK
An event triggered when the status of learning IR code changes

to "OK"

OnLearning
An event triggered when the IR learning mode status changes to

"Learning"

OnLearning
An event triggered when the IR learning mode status changes to

"Command Full"

OnLearningFail
An event triggered when the IR learning mode status changes to

"Learning Fail"

EVENTS

B. ZWAVE_IR_EP

The object enables direct reading and writing of endpoint configuration parameters to which it relates,

as well as sending IR codes via this endpoint. By default, port 1 is assigned to all endpoints (the value of

the PortRouting attribute).

Note! In order for each subsequent object (ZWAVE_IR_EP1, ZWAVE_IR_EP2, etc.) to refer to the

next port of the device (1-6), the PortRouting feature should be set first, for example:

ZWAVE_IR_EP1 - PortRouting : 1 ZWAVE_IR_EP2 - PortRouting : 2 ... ZWAVE_IR_EP6 -

PortRouting : 6

af://n9895

Name Description

PortRouting
Returns the number of the IR port assigned to the endpoint (1 - internal

IR port, 2 ÷ 6 - external IR ports)

AvDeviceNumber

Returns the number of the AV device from the internal IR code library

assigned to the endpoint (four-digit number from the ZXT-310 Code

List)

EmitterPower

Returns the power of the external infrared transmitter to the set IR port:

0 – normal power

255 – high power

Note!*The EmmitterPower parameter is not configurable for port 1*

TransmissionMode

Returns the IR code transmission mode:

0 – continous transmission,

255 – single pulse

Name Description

SendCode

Sends an IR code with a specific number (code number 1-465,

learned or available in the internal IR code library for the given AV

device)

SetPortRouting
Sets the IR port number to be assigned to the currently selected

endpoint

SetAvDeviceNumber

Sets the AV device number from the internal IR code library assigned

to the currently selected endpoint (four-digit number from the ZXT-

310 Code List)

SetEmitterPower

Sets the power of the external infrared transmitter

Note!*Parameter EmmitterPower is not configurable for port 1*

SetTransmissionMode Sets the IR code transmission mode

Name Description

OnIrSend An event triggered when the IR code is sent

then send the configuration.

FEATURES

METHODS

EVENTS

Name Description

Interval
The period of self-awakening of the Z-Wave module from the sleep mode in

seconds

LastWakeUp Time of the last awakening of the Z-Wave module from sleep mode

Name Description

SetInterval
Sets the period of automatic awakening of the Z-Wave module from the sleep

mode

Name Description

OnWakeUp An event triggered when the Z-Wave module wakes up from sleep mode

C. ZWAVE_WAKEUP

An object that allows setting and reading the reading time of the Z-Wave module parameters. The

default setting value for the CLU is 3600s (60 minutes). The minimum value is 10s, maximum

16777200s (about 194 days). It is possible to set the value in step 5s.

Note! It is not recommended to set the value of the WakeUp feature less than 60s during normal

device operation. Decreasing the value can be useful in the case of 'teaching' codes by the device

(generation of events changing the status of learning mode, as well as reading the

LearningStatus feature), as well as setting configuration parameters.

FEATURES

METHODY

EVENTS

D. ZWAVE_CONFIG

The object displays information about communication parameters with the module in the Z-Wave

network.

FEATURES

af://n9945
af://n9976

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information of blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount feature by 3). A query is sent to the

banned module every 1.5 minutes - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In the case of failure of communication with the module (no response,

confirmation, etc.), the feature is incremented by 1, then the attempt to repeat is

twice (in 30s intervals). In case of failure, communication with the module is

blocked (Banned = 1)

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note!* RemoveBan it is not synonymous with the correct communication

with the module again - it allows re-sending an order / query to the

module! In the event of failure, the entire blocking process is restarted!*

ClearFailCount Clears the number of unsuccessful communication attempts

Name Description

OnBanned An event triggered when the device is banned

METHODS

EVENTS

17. Aeotec Nano Switch

Module version: ZW116-C

17.1. General information

Note! The module service is available from CLU version 5.06.03 (build 2043).

af://n10012
af://n10014

Parameter Default Value

120 - external switch mode for S1 1 - 2-state switch mode

121 - external switch mode for S2 1 - 2-state switch mode

Name Description

Value Returns 1 for output set at On and 0 for output set at Off state

Name Description

SetValue Sets output state to 1 or 0

Switch

Changes the output value from 0 to 1 or from 1 to 0. The first parameter is the

time of change:

0 - switches output to continous modespec

number - switches output for a time specified by a parameter (in milliseconds)

SwitchOn Sets output value to 1

SwitchOff Sets output value to 0

Aeotec Nano Switch support includes the ability to turn on / off, permanently or for a specified period of

time, the module output and read its status. The device can be controlled by the methods of the

ZWAVE_DOUT object or by means of external switches connected to the Nano Switch inputs. Their

configuration (operation mode) is possible by changing the appropriate parameters specified individually

in the module manual.

After Inclusion the module to the CLU Z-Wave , basic parameters configuring the operation of switches

are set:

Operation of S1, S2 inputs: S1, S2 inputs directly control the module output:

High state of input -> output switched on,

Low state of input -> output switched off.

How to add / remove: Adding / removing the device is done by pressing button on the Nano Switch

during Inclusion / Exclusion (called on the CLU).

Note! After CLU reboot (sending configuration), wait 10 seconds before the first attempt to turn

on the Nano Switch module.

17.2. Objects

A. ZWAVE_DOUT

Object that enables the device to be turned on / off permanently or for a specified period of time and its

current status to be read.

FEATURES

METHODS

EVENTS

af://n10038
af://n10039

Name Description

OnChange Occurs when a change in the state takes place (regardless of the value)

OnSwitchOn Occurs when On (1) is set at output

OnSwitchOff Occurs when Off (0) is set at output

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Register
The register number (parameter) of the configuration that has been read / set

recently using the available methods

Value The value of the configuration register (parameter)

B. ZWAVE_CONFIG

The object displays information about communication parameters with the module in the Z-Wave

network. It enables to set advanced configuration parameters of a given module.

Note! The change of configuration parameters is possible only after setting parameter 252 to 0

(Unlock), by default set to 1 (Lock).

FEATURES

METHODS

af://n10080

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note!* RemoveBan it is not synonymous with the correct communication

with the module again - it allows re-sending an order / query to the

module! In the event of failure, the entire blocking process is restarted!*

ClearFailCount Clears the number of unsuccessful communication attempts

Set

Sets the value of a given configuration register (parameter):

Register (register or parameter number),

Value (the value of the register or parameter),

Size (size of the sent register or parameter value - in bytes)

Get Gets the value of a given configuration (parameter) register

SetDefault Sets the default value for a given configuration (parameter) register

Name Description

OnBanned An event triggered when the device is banned

Parameter Default Value

120 - external switch mode for S1 1 - 2-state switch mode

121 - external switch mode for S2 1 - 2-state switch mode

EVENTS

18. Aeotec Dual Nano Switch

Module version: ZW140-C

18.1. General information

Note! The module service is available from CLU version 5.06.03 (build 2043).

Aeotec Dual Nano Switch support includes the ability to turn on / off, permanently or for a specified

period of time, the outputs of the module as well as read their status. The device can be controlled by

the methods of the ZWAVE_DOUT object or by means of external switches connected to the Dual Nano

Switch inputs. Their configuration (operation mode) is possible by changing the appropriate parameters

specified individually in the module manual.

After Inclusion the module to the CLU Z-Wave, basic parameters configuring the operation of switches

are set:

Operation of S1, S2 inputs: S1, S2 inputs directly control the module outputs (OUT1, OUT2),

respectively S1 -> OUT1, S2 -> OUT2:

af://n10133
af://n10135

Name Description

Value Returns 1 for output set at On and 0 for output set at Off state

Name Description

SetValue Sets output state to 1 or 0

Switch

Changes the output value from 0 to 1 or from 1 to 0. The first parameter is the

time of change:

0 - switches output to continous modespec

number - switches output for a time specified by a parameter (in milliseconds)

SwitchOn Sets output value to 1

SwitchOff Sets output value to 0

Name Description

OnChange Occurs when a change in the state takes place (regardless of the value)

OnSwitchOn Occurs when On (1) is set at output

OnSwitchOff Occurs when Off (0) is set at output

High state of input -> output switched on,

Low state of input -> output switched off.

How to add / remove: Adding / removing the device is done by pressing button on the Dual Nano

Switch during Inclusion / Exclusion (called on the CLU).

Note! After CLU reboot (sending configuration), wait 10 seconds before the first attempt to turn

on the Dual Nano Switch module.

18.2. Objects

A. ZWAVE_DOUT

Object that enables the device to be turned on / off permanently or for a specified period of time and its

current status to be read.

FEATURES

METHODS

EVENTS

B. ZWAVE_CONFIG

The object displays information about communication parameters with the module in the Z-Wave

network. It enables to set advanced configuration parameters of a given module.

Note! The change of configuration parameters is possible only after setting parameter 252 to 0

(Unlock), by default set to 1 (Lock).

af://n10159
af://n10160
af://n10201

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Register
The register number (parameter) of the configuration that has been read / set

recently using the available methods

Value The value of the configuration register (parameter)

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note!* RemoveBan it is not synonymous with the correct communication

with the module again - it allows re-sending an order / query to the

module! In the event of failure, the entire blocking process is restarted!*

ClearFailCount Clears the number of unsuccessful communication attempts

Set

Sets the value of a given configuration register (parameter):

Register (register or parameter number),

Value (the value of the register or parameter),

Size (size of the sent register or parameter value - in bytes)

Get Gets the value of a given configuration (parameter) register

SetDefault Sets the default value for a given configuration (parameter) register

FEATURES

METHODS

EVENTS

Name Description

OnBanned An event triggered when the device is banned

Parameter Default Value

120 - external switch mode for S1 3 - momentary push button mode

121 - external switch mode for S2 1 - 2-state switch mode.

125 - dimming rate in seconds 3

19. Aeotec Nano Dimmer

Module version: ZW111-C

19.1. General information

Note! The module service is available from CLU version 5.06.03 (build 2043).

Aeotec Nano Dimmer support includes the ability to smoothly control the level of light intensity and

read this value. Lighting can be controlled by the methods of the ZWAVE_DIMMER object or by means of

external switches connected to the Nano Dimmer inputs. Their configuration (operation mode) is

possible by changing the appropriate parameters specified individually in the module manual.

After Inclusion the module to the CLU Z-Wave , basic parameters configuring the operation of switches

are set:

Operation of S1 input: S1 input directly controls the module output:

Single click -> sets last memorized value of the dimmer / turns the dimmer off,

Press and hold -> to increase or decrease the dimmer value.

Operation of S2 input: S2 input is associated with the ZWAVE_DIN obejct, it does not control the

module output. The exact operation can be found in the description of the ZWAVE_DIN object.

How to add / remove: Adding / removing the device is done by pressing button on the Nano Dimmer

during Inclusion / Exclusion (called on the CLU).

Note! After CLU reboot (sending configuration), wait 10 seconds before the first attempt to turn

on the Nano Dimmer module.

19.2. Objects

A. ZWAVE_DIMMER

Object that allows you to control the level of light intensity and read the current state of the device.

FEATURES

af://n10254
af://n10256
af://n10284
af://n10285

Name Description

Value Specifies the current output value

MinValue Minimum value which Value can adopt

MaxValue Maximum value which Value can adopt

RampTime Delay value when changing illumination (in ms)

Name Description

SetValue Sets output value

SetMinValue
Setting the minimum value which can be adopted by an output. Attempting to

set a lower value will generate an error

SetMaxValue
Setting the maximum value which can be addopted by an output. Attempting

to set a higher value will generate an error

SetRampTime Determinates the time of output value increment (in ms)

Switch

Changes the output value from 0 to 1 or from 1 to 0. The first parameter is the

time of change:

0 - switches output to continous mode

number - switches output for a specified time by a parameter(in milliseconds)

The second parameter is the ramp (time of value increments which is optional.

If this parameter is not specified, the default ramp is used

SwitchOn

Sets output value to 1. The first parameter is the time of switching (how long

it is to be switched for). The second parameter is the ramp (time of value

increments) which is optional

SwitchOff

Sets output value to 0. The first parameter is the time of switching (how long

it is to be switched for). The second parameter is the ramp (time of value

increments) which is optional

Hold Executes the function of illuminating/ dimming

HoldUp Executes the function of illuminating

HoldDown Executes the function of dimming

METHODS

EVENTS

Name Description

OnChange Event resulting from changing the output state

OnSwitchOn
Event occuring when the output value is changed from 0 to a higher value

than 0

OnSwitchOff Event occuring when 0 is set at the output

OnValueRise Event occuring when the set value is higher than the current value

OnValueDrop Event occuring when the set value is lower than the current value

Name Description

HoldDelay
Time in milliseconds after which, when pressing and holding a button, the

OnHold event occurs

HoldInterval
Cyclical interval in milliseconds after which, when pressing and holding a

button, the OnHold event occurs

Value Returns input state as 0 or 1

Name Description

SetHoldDelay Sets HoldDelay value

SetHoldInterval Sets HoldInterval value

B. ZWAVE_DIN

The operation of the object is determined by the setting of the configuration parameter 121 of the

Nano Dimmer module, which defines the operating mode for the S2 input:

for the 2 - state switch mode:

High state of input -> the embedded feature Value takes the value 1,

Low state of input -> the embedded feature Value takes the value 0.

for the Momentary push button mode:

Singel click -> the embedded feature Value takes the value 1,

Single click again -> the embedded feature Value takes the value 0.

Note! Based on the descriptions of changes (presented above) to an embedded Value feature

of ZWAVE_DIN object, the configuration in the ZWAVE_DIN -> ZWAVE_DIMMER binding should be

adjusted accordingly, in order to achieve the desired functionality (on / off, dimming). If you want

to perform a standard configuration in the Grenton system to control the DIMMER object, an

adequate input of DIN or TouchPanel module should be used.

FEATURES

METHODS

EVENTS

af://n10359

Name Description

OnChange Occurs when a change in the input state takes place (regardless of the value)

OnSwitchOn Occurs when the high state is set at input

OnSwitchOff Occurs when the low state is set at input

OnShortPress Occurs after pressing the button for 500 - 2000ms

OnLongPress Occurs after pressing the button for at least 2000ms

OnHold
Occurs for the first time after HoldDelay time and then cyclically every

HoldInterval value

OnClick Occurs after pressing the button for less than 500 ms

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Register
The register number (parameter) of the configuration that has been read / set

recently using the available methods

Value The value of the configuration register (parameter)

C. ZWAVE_CONFIG

The object displays information about communication parameters with the module in the Z-Wave

network. It enables to set advanced configuration parameters of a given module.

Note! The change of configuration parameters is possible only after setting parameter 252 to 0

(Unlock), by default set to 1 (Lock).

FEATURES

METHODS

af://n10429

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note!* RemoveBan it is not synonymous with the correct communication

with the module again - it allows re-sending an order / query to the

module! In the event of failure, the entire blocking process is restarted!*

ClearFailCount Clears the number of unsuccessful communication attempts

Set

Sets the value of a given configuration register (parameter):

Register (register or parameter number),

Value (the value of the register or parameter),

Size (size of the sent register or parameter value - in bytes)

Get Gets the value of a given configuration (parameter) register

SetDefault Sets the default value for a given configuration (parameter) register

Name Description

OnBanned An event triggered when the device is banned

Parameter Default Value

35 - moving time from up to down in seconds 11

120 - external switch mode for S1 1 - 2-state switch mode

121 - external switch mode for S2 3 - momentary push button mode

EVENTS

20. Aeotec Nano Shutter

Module version: ZW141-C

20.1. General information

Note! The module service is available from CLU version 5.06.03 (build 2043).

Aeotec Nano Shutter support includes the ability to control the module outputs (up / down / stop). The

device can be controlled by the methods of the ZWAVE_ROLLER_SHUTTER object or by means of

external switches connected to the Nano Shutter inputs. Their configuration (operation mode) is

possible by changing the appropriate parameters specified individually in the module manual.

After Inclusion the module to the CLU Z-Wave, basic parameters configuring the operation of switches

are set:

Operation of S1 input: S1 input directly controls the module outputs:

af://n10482
af://n10484

Name Description

OUT1 State of OUT1 relay (moving upwards)

OUT2 State of OUT2 relay (moving downwards)

State

Output state:

0 - no movement,

1 - moving upwards,

2 - moving downwards

MaxTime Default Time parameter value. 0 if not specified

High state of input -> shutter up (OUT1 on) if previously down / shutter down (OUT2 on) if

previously up,

Low state of input -> shutter stopped, outputs off.

Operation of S2 input: S2 input directly controls the module outputs:

Single click -> shutter up (OUT1 on) if previously down / shutter stopped, outputs off / shutter

down (OUT2 on) if previously up.

How to add / remove: Adding the device is done by pressing button on the Nano Shutter during

Inclusion, removing is done by pressing button 6 times during Exclusion (called on the CLU).

Note! After CLU reboot (sending configuration), wait 10 seconds before the first attempt to turn

on the Nano Shutter module.

20.2. Objects

A. ZWAVE_ROLLER_SHUTTER

Object enabling the roller shutter control (up / down / stop). The condition of the roller shutter is

determined on the basis of the called methods.

Note! The object does not take over the information about the real state of the device controlled

by external switches connected to inputs S1, S2.

Note! For the correct operation of the object, the MaxTime feature and the 35 configuration

parameter of the Nano Shutter module should be set to the same value.

FEATURES

METHODS

af://n10515
af://n10516

Name Description

Up

Roller shuter up or STOP if moving. Parameter Time:

number - output is active for specified timer

0 - output is active for the time specified in MaxTime

Down

Roller shutter down or STOP if moving. Parameter Time:

number - output is active for specified timer

0 - output is active for the time specified in MaxTime

Start

Roller shutter up if the preceding motion was down or roller shutter down if the

preceding motion was up. Parameter Time:

number - output is active for specified timer

0 - output is active for the time specified in MaxTime

Stop STOP if moving

Hold Hold with direction change

HoldUp Hold always up

HoldDown Hold always down

Name Description

OnChange Result from a change in the state of any of the outputs

OnUp Occurs when changing the Stop state to the Up state

OnDown Occurs when changing the Stop state to the Down state

OnStart Occurs when Start is requested

OnStop Occurs when Stop is requested

EVENTS

B. ZWAVE_CONFIG

The object displays information about communication parameters with the module in the Z-Wave

network. It enables to set advanced configuration parameters of a given module.

Note! The change of configuration parameters is possible only after setting parameter 252 to 0

(Unlock), by default set to 1 (Lock).

FEATURES

af://n10585

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Register
The register number (parameter) of the configuration that has been read / set

recently using the available methods

Value The value of the configuration register (parameter)

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note!* RemoveBan it is not synonymous with the correct communication

with the module again - it allows re-sending an order / query to the

module! In the event of failure, the entire blocking process is restarted!*

ClearFailCount Clears the number of unsuccessful communication attempts

Set

Sets the value of a given configuration register (parameter):

Register (register or parameter number),

Value (the value of the register or parameter),

Size (size of the sent register or parameter value - in bytes)

Get Gets the value of a given configuration (parameter) register

SetDefault Sets the default value for a given configuration (parameter) register

Name Description

OnBanned An event triggered when the device is banned

METHODS

EVENTS

af://n10638

Parameter Default Value

35 - moving time from up to down in hundredths of a

seconds
15000

120 - external switch mode for S1 1 - 2-state switch mode

121 - external switch mode for S2
3 - momentary push button

mode

21. Aeotec Nano Shutter (V2)

Module version: ZW141-C

21.1. General information

Note! The module service is available from CLU version 5.08.01.

Aeotec Nano Shutter support includes the ability to control the module outputs (up / down / stop). The

device can be controlled by the methods of the ZWAVE_ROLLER_SHUTTER object or by means of

external switches connected to the Nano Shutter inputs. Their configuration (operation mode) is

possible by changing the appropriate parameters specified individually in the module manual.

Note! There may be numerous delays and anomalies in the execution of commands by the

modules, especially when they are in the range of other Z-WAVE devices or devices using the

radio frequency of 868.42 MHz such as gate remote controls.

After Inclusion the module to the CLU Z-Wave, basic parameters configuring the operation of switches

are set:

Operation of S1 input: S1 input directly controls the module outputs:

High state of input -> shutter up (OUT1 on) if previously down / shutter down (OUT2 on) if

previously up,

Low state of input -> shutter stopped, outputs off.

Operation of S2 input: S2 input directly controls the module outputs:

Single click -> shutter up (OUT1 on) if previously down / shutter stopped, outputs off / shutter

down (OUT2 on) if previously up.

How to add / remove: Adding the device is done by pressing button on the Nano Shutter during

Inclusion, removing is done by pressing button 6 times during Exclusion (called on the CLU).

Note! After CLU reboot (sending configuration), wait 10 seconds before the first attempt to turn

on the Nano Shutter module.

21.2. Objects

af://n10638
af://n10640
af://n10673

Name Description

OUT1 State of OUT1 relay (moving upwards)

OUT2 State of OUT2 relay (moving downwards)

State

Output state:

0 - no movement,

1 - moving upwards,

2 - moving downwards

Position

Percentage value of the shutter opening:

0% - fully closed,

100% - fully open.

MoveTime The time in milliseconds it takes to fully open / close the blind

Name Description

Up Roller shuter up or STOP if moving.

Down Roller shutter down or STOP if moving.

Start
Roller shutter up if the preceding motion was down or roller shutter down if the

preceding motion was up.

Stop STOP if moving

Hold Hold with direction change

HoldUp Hold always up

HoldDown Hold always down

A. ZWAVE_ROLLER_SHUTTER

Object enabling the roller shutter control (up / down / stop). The condition of the roller shutter is

determined on the basis of the called methods.

Note! The object does not take over the information about the real state of the device controlled

by external switches connected to inputs S1, S2 or button on the module housing.

FEATURES

METHODS

EVENTS

af://n10674

Name Description

OnChange Result from a change in the state of any of the outputs

OnUp Occurs when changing the Stop state to the Up state

OnDown Occurs when changing the Stop state to the Down state

OnStart Occurs when Start is requested

OnStop Occurs when Stop is requested

Name Description

NodeID
The number of the module (node) in the Z-Wave network (transmitted for each Z-

Wave module after adding it to the controller)

Banned

Information on blocking Z-Wave communication with the module:

0 – communication with the module is not blocked,

1 – blocked communication with the module (module banned).

The blocking occurs when 3 consecutive attempts to communicate with the

module fail (increment of the FailCount attribute by 3). A query is sent to the

banned module every 1 minute - if the CLU receives a response, then the

blocking will be removed and it is possible to try again to send the order to the

module

FailCount

The number of unsuccessful attempts to communicate with the Z-Wave module.

In case of failure of communication with the module (no response, confirmation,

etc.), the feature is incremented by 1, then the attempt to repeat is twice (in 10s

intervals). In case of failure, communication with the module is blocked (Banned

= 1)

Register
The register number (parameter) of the configuration that has been read / set

recently using the available methods

Value The value of the configuration register (parameter)

B. ZWAVE_CONFIG

The object displays information about communication parameters with the module in the Z-Wave

network. It enables to set advanced configuration parameters of a given module.

Note! The change of configuration parameters is possible only after setting parameter 252 to 0

(Unlock), by default set to 1 (Lock).

FEATURES

METHODS

af://n10744

Name Description

RemoveBan

It removes the blocking of communication with the Z-Wave module (in the

case when the feature Banned = 1). Calling the method enables re-

sending the command to the module.

Note!* RemoveBan it is not synonymous with the correct communication

with the module again - it allows re-sending an order / query to the

module! In the event of failure, the entire blocking process is restarted!*

ClearFailCount Clears the number of unsuccessful communication attempts

Set

Sets the value of a given configuration register (parameter):

Register (register or parameter number),

Value (the value of the register or parameter),

Size (size of the sent register or parameter value - in bytes)

Get Gets the value of a given configuration (parameter) register

SetDefault Sets the default value for a given configuration (parameter) register

Name Description

OnBanned An event triggered when the device is banned

EVENTS

XVIII. MyGrenton mobile application

1. Installation and first launch of the myGrenton
application

1.1. Installation

A. Android

The current version of the application is available in the Play Store for phones or tablets with the

Android system (version 5.0 or higher). After opening the application, a welcome window with

information about the application and the possibility of adding a new interface will appear.

af://n10798
af://n10799
af://n10800
af://n10801

B. iOS

The current version of the application is available in the App Store for phones or tablets with the iOS

system (12 or higher). After opening the application, a welcome window with the possibility of adding

a new interface will appear.

Note! Minimum version of CLU 05.06.04 is required for correct operation of the application. For

selected widgets, the minimum CLU and Object Manager versions required for correct operation

are given in their descriptions.

Note! The application may ask, among others for permission to take photos and videos, full access

to the network, display network connections, prevent the phone from going to sleep, receive data

from the Internet. For correct working of the application, you must agree to the above conditions.

1.2. First start-up, demonstration interface

The myGrenton application allows you to experience the application interface, widget capabilities and

key functionalities without connecting to the actual Grenton system using the DEMO interface.

af://n10804
af://n10811

Adding a DEMO interface is possible from the first run view of the application or subsequent ones

(Settings view), only if the user has not added an interface connected to the real system. The interface

includes several sample pages with fully functional widgets.

Note! The DEMO interface is available for myGrenton application version 1.5.0 (Android) / 1.9.0

(iOS) or higher.

Android iOS

Android iOS

Android iOS

The DEMO interface will be automatically deleted after adding an new interface. It is possible to delete

DEMO interface in the standard way - in the interface management window.

2. Creating the interface

To create an interface to the myGrenton application, click on the 'Add myGrenton interface' icon in the

Main Menu of the Object Manager:

Then a window will appear with the option to change the interface name:

af://n10825

After accepting the name, an empty interface will be created:

2.1. Adding a page to the interface

To add another interface page, click on the + icon next to the phone graphic. Up to 30 pages can be

created.

2.2. Deleting a page from the interface

To remove a page from the interface, click on the x icon, which is located in the upper right corner of

the phone and confirm the removal of the page.

2.3. Copying the interface

To copy an interface, right-click on the interface and select "Create copy of myGrenton interface" from

the menu:

Then choose a name for the new interface:

af://n10832
af://n10834
af://n10836

3. Widgets

To control the system using myGrenton application from the level of the phone or tablet, widgets are

used. Each of them offers a different functionality. Widgets can be added to the interface in 2 ways:

1. Dragging a specific object from the list of objects in the Object Manager (then the created widget

will have a predefined template)

2. Dragging a specific widget from the tab on the right side and then completing its desired

parameters.

af://n10842

Note! The maximum number of widgets per page is 30.

3.1. Header (HEADER)

Used to display a string. All alphabetic, numeric and special characters are supported.

af://n10855

To change the header, click the word Header in the phone field. It is also possible to change the

Label field in the properties window, which appears after double-clicking on the widget with the left

mouse button.

3.2. Value (VALUE)

Note! From the version of Object Manager 1.6.0, the VALUE widget and the possibility of using it

as a pre-defined template will not be available. It is replaced with the VALUE_V2 widget.

VALUE widgets included in projects created on previous versions of Object Manager will still be

properly supported and displayed in the myGrenton application.

af://n10860

The widget returns the property values of the object. This widget has three units to choose from:

unknown, percent and degree. In addition, it is possible to describe the widget in the Label field and

also to change the icon in the Icon field in the properties window, which appears after double-clicking

on the widget with the left mouse button.

Filled VALUE widget:

3.3. Value v2 (VALUE_V2)

Note! The VALUE_V2 widget is available for Object Manager version 1.6.0 or higher, and for

myGrenton application version 1.4.0 or higher (Android) and version 1.8.0 or higher (iOS).

The widget is dedicated to display the value of a user feature or an embedded feature of a given object.

This widget has three units to choose from: unknown, percent and degree. The selected unit is

displayed next to the value. In addition, you should choose the type:

af://n10868

STRING - text,

FLOAT - floating point, for this type of value it is possible to define the number of displayed

decimal places (property Precision),

INTEGER - only integer values are displayed.

Filled VALUE_V2 widget:

3.4. Value Double (VALUE_DOUBLE)

Note! The VALUE_DOUBLE widget is available for Object Manager version 1.6.0 or higher, for

myGrenton application version 1.4.0 (Android) / 1.8.0 (iOS) or higher.

af://n10882

This is the Value v2 double-version widget. The widget is dedicated to display the value of a user

features or an embedded features of a given object. This widget has three units to choose from:

unknown, percent and degree. The selected unit is displayed next to the value. In addition, you should

choose the type:

STRING - text,

FLOAT - floating point, for this type of value it is possible to define the number of displayed

decimal places (property Precision),

INTEGER - only integer values are displayed.

Filled VALUE_DOUBLE widget:

3.5. On/Off (ON_OFF)

The widget is used to control the executive elements. When dragging the widget from the tab on the

right side of the screen, it must be completed with the values in the State , Action on , Action

off fields. Widget dedicated mainly to control relay outputs, however it can be used, among others, for

switching LED lighting, starting virtual objects.

For the digital output objects, pre-defined templates for the ON_OFF widget are defined. To add the

ON_OFF widget with the desired digital output object, drag the DOUT object from the list of objects to

the interface page:

Filled ON_OFF widget:

af://n10896

3.6. On/Off Double (ON_OFF_DOUBLE)

Note! The ON_OFF_DOUBLE widget is available for Object Manager version 1.4.0 or higher, and

for myGrenton application version 1.2.3 or higher (Android) and version 1.6.0 or higher (iOS).

This is the On/Off double-version widget. By dragging the widget from the tab to the right of the

screen, it must be supplemented with values in the fields State , Action on , Action off for both

buttons.

Filled ON_OFF_DOUBLE widget:

af://n10903

3.7. Scene (SCENE)

The widget is dedicated to calling created scripts.

For scripts, ready-made templates for the SCENE widget are defined. To add a SCENE widget with the

desired digital output object, drag the script from the list of objects to the interface page:

af://n10910

Filled SCENE:

3.8. Scene Double (SCENE_DOUBLE)

The widget is used to call scripts (object methods). In contrast to the widget SCENE has 2 buttons for

actions.

af://n10917

Filled SCENE_DOUBLE widget:

3.9. Dimmer (DIMMER)

Note! From the version of Object Manager 1.7.0, the DIMMER widget and the possibility of using

it as a pre-defined template will not be available. It is replaced with the DIMMER_V2 widget.

DIMMER widgets included in projects created on previous versions of Object Manager will still be

properly supported and displayed in the myGrenton application.

Widget dedicated for DIMMER and LEDRGB modules. When dragging the widget from the tab on the

right side of the screen, it should be filled in with the values in the State , Action on , Action

off , Unit , Min , Max , Action slide fields. This widget has a slider, which allows it to be

controlled in a given range.

af://n10922

For the DIMM object, pre-defined templates for the DIMMER widget are defined. To add a DIMMER

widget with a pre-made template, drag a DIMM from the list of objects to the interface page:

Filled DIMMER widget:

The DIMMER widget has a ready template also for the LEDRGB object:

Widget created:

3.10. Dimmer v2 (DIMMER_V2)

Note! The DIMMER_V2 widget is available for Object Manager version 1.7.0 or higher, and for

myGrenton application version 1.5.0 or higher (Android) and version 1.9.0 or higher (iOS).

Widget dedicated for DIMMER and LEDRGBW modules, enables smooth lighting control. The DIMMER_V2

widget contains:

value - the current output value expressed as a percentage, displayed in the right part of the

widget (calculated on the basis of the set Min , Max properties),

actions on / off - actions triggered when clicking on the widget to activate / deactivate the output,

output control slider - works in percentage mode, the output value is set on the basis of the given

range (Min , Max properties) and precision (the Precision property determines the number of

decimal places of the set value).

For DIMM, LEDRGB, LEDRGBW objects, pre-defined templates for the DIMMER_V2 widget are defined. To

add a DIMMER_V2 widget with a pre-made template, drag an object from the list of objects to the

interface page:

af://n10936

Filled DIMMER_V2 widget:

Widget appearance in the myGrenton application:

3.11. LED Lighting (LED)

Widget dedicated to LED lighting. It has one bistable on/off switch and 3 sliders: Color control slider,

Saturation control slider, Brightness control slider.

af://n10954

For LED lighting, ready-made templates for the LED widget are defined. To add a LED widget with a

ready template, drag the LEDRGB object from the list of objects to the interface page:

Filled LED widget:

3.12. Thermostat (THERMOSTAT)

Note! Widget is supported for thermostats created in CLU 2.0!

Widget dedicated for virtual objects of the thermostat type. In the case when we draw from the list of

objects already defined thermostat to the interface, the created widget is completed on the basis of

given thermostat input and output features.

For thermostats, ready-made templates for the THERMOSTAT widget are defined. To add a

THERMOSTAT widget with a ready template, drag the virtual thermostat from the list of objects to the

interface page:

af://n10961

Filled THERMOSTAT widget:

A. Schedule configuration in the application

Note! The new schedule configuration is available for myGrenton application version 1.2.3 or

higher (Android) and version 1.6.0 or higher (iOS).

In the myGrenton application, you can edit the thermostat schedule. To do this, click on the widget

temperature field:

af://n10970

Then select the schedule mode and the EDIT SCHEDULE option:

The window will display the schedule downloaded from the CLU. You can edit this schedule or add new

schedules for each day of the week:

iOS Android

Adding a new schedule

After selecting Add Schedule For Other Days (iOS) or Add new schedule (Android), the adding

schedule window will open:

iOS Android

Then:

Mark the desired days of the week (at least one day must be selected),

Set the temperature for specific time intervals (after opening the window, default time intervals

are displayed),

Accept the changes by clicking on Save .

The application for unselected days of the week will automatically create a new schedule or add them

to the existing one to correctly complete the values for the whole week.

Delete / edit a section of the schedule

After selecting Edit for the selected section of the schedule, the editing window will open, where you

can edit the selected days of the week, time intervals or delete the section:

iOS Android

To delete a schedule section, click on Remove Section . After deleting the schedule, the application

will automatically create a new schedule for the missing days of the week or add them to the existing

one to correctly complete the values for the whole week.

With the option Set Default Intervals , you can replace the current time intervals with the default

ones.

Adding new time periods

After selecting Add New Interval , the window for adding a time interval will open:

iOS Android

Then:

Enter the start time of the interval,

Enter the end time of the interval,

Set the desired temperature,

Accept the changes by clicking on Save .

The application will automatically add intervals for unaccounted hours to correctly fill in the values for

the whole day.

Note! The Add New Interval option allows you to add up to 6 time periods.

Delete / edit time period

To edit an existing period, click on the time period (iOS / Android) or make a left-swipe gesture on the

time period, and then click on the Edit option (available only for iOS).

To delete a time period, perform a left-swipe gesture on the time period, and then click Delete .

iOS Android

3.13. Roller Shutter (ROLLER_SHUTTER)

The widget is used to control the blinds. The application displays the current status of the blinds

(STOPPED, CLOSED, OPEN).

af://n11046

For blind controllers, pre-defined templates for the ROLLER_SHUTTER widget are defined. To add the

ROLLER_SHUTTER widget with a ready template, drag the ROLLER_SHUTTER object from the list of

objects to the phone:

Filled ROLLER_SHUTTER widget:

3.14. Roller Shutter v2 (ROLLER_SHUTTER_V2)

Note! The ROLLER_SHUTTER_V2 widget is available for Object Manager version 1.4.0 or higher,

CLU version 5.7.1 or higher, Roller Shutter x1 DIN / Roller Shutter x3 DIN / Roller Shutter FM

module in version 2.1.1 or higher and for myGrenton application version 1.2.3 (Android) / 1.6.0

(iOS) or higher.

Note! From the version of Object Manager 1.6.0, the ROLLER_SHUTTER_V2 widget and the

possibility of using it as a pre-defined template will not be available. It is replaced with the

ROLLER_SHUTTER_V3 widget.

af://n11053

ROLLER_SHUTTER_V2 widgets included in projects created on previous versions of Object

Manager will still be properly supported and displayed in the myGrenton application.

Widget dedicated to advanced control of blinds and slats. The ROLLER SHUTTER_V2 widget supports:

Buttons enabling the actions of OPENING / CLOSING / STOP the roller shutter,

Percentage of shutter opening level,

Sliders for controlling and displaying the shutter and slat opening level.

For blind controllers, pre-defined templates for the ROLLER_SHUTTER_V2 widget are defined. To add

the ROLLER_SHUTTER_V2 widget with a ready template, drag the ROLLER_SHUTTER object from the

list of objects to the phone:

Filled ROLLER_SHUTTER_V2 widget:

Widget appearance in myGrenton application:

3.15. Roller Shutter v3 (ROLLER_SHUTTER_V3)

Note! The ROLLER_SHUTTER_V3 widget is available for Object Manager version 1.6.0 or higher,

CLU version 5.7.1 or higher, Roller Shutter x1 DIN / Roller Shutter x3 DIN / Roller Shutter FM

module in version 2.1.1 or higher and for myGrenton application version 1.4.0 (Android) / 1.8.0

(iOS) or higher.

Widget dedicated to advanced control of blinds and slats. The ROLLER SHUTTER_V3 widget supports:

Buttons enabling the actions of OPENING / CLOSING / STOP the roller shutter,

Percentage of shutter opening level,

Sliders for controlling and displaying the shutter and slat opening level,

Display of the state of Calibration / Locked .

af://n11075

For blind controllers, pre-defined templates for the ROLLER_SHUTTER_V3 widget are defined. To add

the ROLLER_SHUTTER_V3 widget with a ready template, drag the ROLLER_SHUTTER object from the

list of objects to the phone:

Filled ROLLER_SHUTTER_V3 widget:

Widget appearance in myGrenton application:

3.16. Camera (CAMERA)

Note! The CAMERA widget is available for Object Manager version 1.3.5-204201 or higher, and

for myGrenton application version 1.2.2 or higher (Android) and version 1.5.1 or higher (iOS).

Widget is used to display streaming video from IP camera. After dragging the widget from the tab on the

right side of the screen, it should be completed with the value in the URL field (RTSP stream address

for IP camera).

af://n11096

Filled CAMERA widget:

A. Camera configuration

The condition for the proper operation of the widget is to use the video stream with the RTSP protocol

and the MJPG codec. Detailed information on camera configuration can be found in the documentation.

Note! It is recommended to use Dahua or Hikvision cameras. A configuration example is shown

based on the settings for the models:

Dahua IP CAMERA Model: IPC-HFW2531S-S-0280B-S2

Hikvision NETWORK CAMERA Model: DS-2CD1043G0-I

Example of how to get RTSP stream for Hikvision camera:

1. RTSP without authentication

af://n11103

rtsp: // < device IP address > : < RTSP port > / Streaming / channels / <

channel number > < stream number > / ?transportmode=unicast

NOTE: < stream number > represents main stream (01) or sub stream (02)

Example:

rtsp://173.200.91.70:10554/Streaming/channels/101/?transportmode=unicast - get

main stream for channel 1

rtsp://173.200.91.70:10554/Streaming/channels/102/?transportmode=unicast - get

substream

2. RTSP with authentication

rtsp: // < username > : < password > @ < device IP address >: < RTSP port > /

Streaming / channels / < channel number > < stream number > / ?

transportmode=unicast

Example:

rtsp://admin:password@173.200.91.70:10554/Streaming/channels/101/?

transportmode=unicast - get main stream for channel 1

rtsp://admin:password@173.200.91.70:10554/Streaming/channels/102/?

transportmode=unicast - get substream

Example of how to get RTSP stream for Dahua camera:

1. RTSP without authentication

rtsp: // < device IP address > : < RTSP port > / cam / realmonitor ? channel =

< channel number > & subtype = < stream number >

Example:

rtsp://173.200.91.70:10554/cam/realmonitor?channel=1&subtype=1 - get main stream

2. RTSP with authentication

rtsp: // < username > : < password > @ < device IP address > : < RTSP port > /

cam / realmonitor ? channel = < channel number > & subtype = < stream number >

Example:

rtsp://admin:password@173.200.91.70:10554/cam/realmonitor?channel=1&subtype=1 -

get main stream

B. Camera widget in the app

The stream from the camera is displayed after pressing the widget in the application. To close the

preview, press the cross in the upper left corner of the screen or use the system back button. The

thumbnail image from the camera is updated each time the stream from the camera is displayed.

Widget appearance in the myGrenton application:

af://n11139

iOS Android

Camera stream preview view:

iOS Android

3.17. Text (TEXT)

Note! The TEXT widget is available for Object Manager version 1.5.0 or higher and for myGrenton

application version 1.3.0 (Android) / 1.7.0 (iOS) or higher.

The widget is dedicated to display the value of a user feature or an embedded feature of a given object.

The widget has a Icon visibility property that allows you to display or hide the widget icon in the

application.

af://n11157

Filled TEXT widget:

The widget supports basic HTML language tags:

 - Inserts a single line break,

 - Bold font,

<i> - Italic font,

 - Highlight in the color of the interface theme.

It is possible to nest tags.

Examples of the use of tags:

Create user features of the String type, e.g:

string_br Initial value: Inserts
a single line break ,

string_b Initial value: Bold font ,

string_i Initial value: <i>Italic font</i> ,

string_em Initial value: Highlight in the color of the interface

theme .

string_nested Initial value: <i>Nest tags</i> .

Add the myGrenton interface containing configured TEXT widgets for the created user features.

Send the interface to your mobile device.

Widget appearance in the myGrenton application:

3.18. Scheduler (SCHEDULER)

Note! The SCHEDULER widget is available for Object Manager version 1.5.0 or higher and for

myGrenton application version 1.3.0 (Android) / 1.7.0 (iOS) or higher.

Widget dedicated for virtual objects of the scheduler type.

af://n11196

For scheduler, ready-made templates for the SCHEDULER widget are defined. To add a SCHEDULER

widget with a ready template, drag the virtual scheduler from the list of objects to the interface page:

Filled SCHEDULER widget:

In the myGrenton application, you can edit the schedule. To do this, click on the widget value field:

Schedule configuration has been described for the THERMOSTAT widget look up XVIII.3.9.A.. Slight

differences are due to the different characteristics of the virtual scheduler object.

3.19. Event Scheduler (EVENT_SCHEDULER)

Note! The EVENT_SCHEDULER widget is available for Object Manager version 1.6.0 or higher, CLU

version 5.9.1 or higher, for myGrenton application version 1.4.0 (Android) / 1.8.0 (iOS) or higher.

Widget dedicated for virtual objects of the event scheduler type.

For event scheduler, ready-made templates for the EVENT_SCHEDULER widget are defined. To add a

EVENT_SCHEDULER widget with a ready template, drag the virtual event scheduler from the list of

objects to the interface page:

Filled EVENT_SCHEDULER widget:

af://n11208

A. Event scheduler configuration in the application

In the myGrenton application, you can edit the rules of the event scheduler. To do this, click on the

widget value field:

af://n11217

The window will display the rules downloaded from the CLU. You can edit these rules or add new ones

for each day of the week:

Adding a new rule

After selecting Add New Rule , the adding rule window will open:

Then:

Mark the desired days of the week (at least one day must be selected),

Set the trigger time,

Accept the changes by clicking on Save .

Activate / deactivate the rule

To activate / deactivate a rule, click on the slider in the right part of the rule:

Delete / edit rule

To edit an existing rule, click on the rule (Android) or make a left-swipe gesture on the rule, and then

click on the Edit option (available only for iOS).

To delete a rule, perform a left-swipe gesture on the rule, and then click Delete .

3.20. Multisensor (MULTISENSOR)

Note! The TV_REMOTE_CONTROL widget is available for Object Manager version 1.6.0 or higher,

CLU version 5.9.1 or higher, Multisensor IR module in version 1.2.6 or higher, for myGrenton

application version 1.4.0 (Android) / 1.8.0 (iOS) or higher.

Widget dedicated to displaying the parameters of the GRENTON MULTISENSOR IR device. It allows you

to display environmental parameters such as: temperature, humidity, CO2, VOC (Volatile Organic

Compounds), air pressure, sound intensity and light intensity. The widget has a Label Visibility

property that allows you to display or hide the widget label in the application. The order of displayed

parameters can be changed in the myGrenton application.

af://n11241

For MULTISENSOR object, pre-defined templates for the MULTISENSOR widget are defined. To add the

MULTISENSOR widget with a ready template, drag the MULTISENSOR object from the list of objects to

the phone:

Filled MULTISENSOR widget:

Widget appearance in the myGrenton application, versions with visible and hidden label:

3.21. TV Remote Control (TV_REMOTE_CONTROL)

Note! The TV_REMOTE_CONTROL widget is available for Object Manager version 1.6.0 or higher,

for myGrenton application version 1.4.0 (Android) / 1.8.0 (iOS) or higher.

The widget is modeled on the appearance of the TV Remote Control. It allows you to work with devices

integrated with the Grenton system and replace the traditional remote control. The control is carried out

by means of actions assigned to the selected buttons. The Tv Remote Control widget contains:

initialization action - action triggered when clicking on the widget on the myGrenton application

(any action can be assigned),

buttons to control the activation / deactivation of the device,

buttons for changing the channel (program) and changing the device volume,

buttons to control playback (pause, run, forward, rewind),

function buttons (menu, VOD, return, etc.).

Operation in the Remote TV widget is one-way, it is not possible to read the device status.

af://n11253

Widget appearance in the myGrenton application:

3.22. Audio Remote Control (AUDIO_REMOTE_CONTROL)

Note! The AUDIO_REMOTE_CONTROL widget is available for Object Manager version 1.6.0 or

higher, for myGrenton application version 1.4.0 (Android) / 1.8.0 (iOS) or higher.

Widget dedicated to controlling audio systems. It allows you to work with devices integrated with the

Grenton system. The control is carried out by means of actions assigned to the selected buttons. The

AUDIO_REMOTE_CONTROL widget contains:

initialization action - action triggered when clicking on the widget on the myGrenton application

(any action can be assigned),

buttons to control the activation / deactivation of the device,

buttons for changing the device volume,

buttons to control playback (pause, run, next, previous),

artist and title display fields.

Operation in the Remote Audio widget is one-way, it is not possible to read the device status. It is

possible to retrieve information from the selected feature (e.g. user's feature) and display it in the Artist

and / or Title field.

af://n11273

Widget appearance in the myGrenton application:

3.22. Contact Sensor (CONTACT_SENSOR)

Note! The CONTACT_SENSOR widget is available for Object Manager version 1.7.0 or higher, for

myGrenton application version 1.5.0 (Android) / 1.9.0 (iOS) or higher.

Widget dedicated to displaying On / Off states based on the value of objects, features. The

CONTACT_SENSOR widget contains:

support for On / Off states - based on the value of objects, features (0/1 or true/false), the

widget status is properly displayed,

indications - it is possible to set any name of On / Off states through the properties Indication

ON , Indication OFF ,

optional click action - action triggered when clicking on the widget (any action can be assigned).

af://n11293

For DIN objects, pre-defined templates for the CONTACT_SENSOR widget are defined. To add a

CONTACT_SENSOR widget with a pre-made template, drag an object from the list of objects to the

interface page:

Filled CONTACT_SENSOR widget:

Widget appearance in the myGrenton application:

3.23. Contact Sensor Double (CONTACT_SENSOR_DOUBLE)

Note! The CONTACT_SENSOR_DOUBLE widget is available for Object Manager version 1.7.0 or

higher, for myGrenton application version 1.5.0 (Android) / 1.9.0 (iOS) or higher.

This is the Contact Sensor double-version widget. Widget dedicated to displaying On / Off states based

on the value of objects, features. The CONTACT_SENSOR_DOUBLE widget contains:

support for On / Off states - based on the value of objects, features (0/1 or true/false), the

widget status is properly displayed,

indications - it is possible to set any name of On / Off states through the properties Indication

ON , Indication OFF ,

optional click action - action triggered when clicking on the widget (any action can be assigned).

af://n11311

Filled CONTACT_SENSOR_DOUBLE widget:

Widget appearance in the myGrenton application:

3.24. Slider (SLIDER)

Note! The SLIDER widget is available for Object Manager version 1.7.0 or higher, for myGrenton

application version 1.5.0 (Android) / 1.9.0 (iOS) or higher.

Widget dedicated to smooth value control. The SLIDER widget contains:

unit - units to choose from: UNKNOWN , PERCENT , DEGREE ,

value - current output value displayed in the right part of the widget. For the PERCENT unit,

calculated on the basis of the Min , Max properties set, for the UNKNOWN , DEGREE units, the

value is displayed with the number of decimal places specified in the Precision property,

slider - value set on the basis of the given range (Min , Max properties) and precision (the

Precision property determines the number of decimal places of the set value),

optional click action - action triggered when clicking on the widget (any action can be assigned).

af://n11327

Filled SLIDER widget:

Widget appearance in the myGrenton application:

3.25. Personalization of the widget

A. Change the name

The widget name can be quickly changed by clicking on the current widget name. To confirm the

change, press Enter on the keyboard. To cancel, press Esc on the keyboard.

af://n11345
af://n11346

B. Change icon / background picture

The widget icon can be quickly changed by clicking on the icon next to the widget name. Then a window

with available icons will appear.

The background image of the Scene or Open / Close widget can be quickly changed by clicking on the

edit icon under the widget name. Additionally, it is possible to choose the shade of the picture from the

available 15 colors.

af://n11349

Note! If an icon or background image is not supported in a given version of myGrenton, it will be

replaced with the default icon / background image.

3.26. Widget removal

To delete a widget, select it and press the Delete key or right-click and select the Delete option

from the context menu. On the device with the macOS operating system installed, use the combination

of Fn + Backspace characters.

3.27. Copying widgets

To copy a widget, select it and press the key combination Ctrl + C (then Ctrl + V in the

destination) or choose the Copy option from the context menu (then RMB and Paste in the

destination).

It is possible to select more widgets to copy. This can be done by selecting while holding down the

Ctrl key, or by selecting a range while holding down the Shift key.

Widgets can be copied to all pages of the interface, also to pages of other interfaces within one project.

Note! If the widgets are copied to another project, they will have to be reconfigured.

4. Personalization of the interface

You can customize the appearance of the interface to your preferences. To personalize the interface,

click the MyGrenton interface settings icon in the toolbar:

After clicking the icon, a window with the interface settings will appear:

af://n11356
af://n11358
af://n11365

4.1. Change the name of the interface

To change the name of the interface, click on the current name displayed at the top of the window. To

confirm the change, press Enter on the keyboard. To cancel, press Esc on the keyboard.

af://n11370

4.2. Change the interface icon

To change the interface icon, click on the icon image next to the interface name. A window with

available icons will appear.

af://n11373

4.3. Change the color of the interface

It is also possible to change the color of the interface theme. There are 15 different theme colors

available from the drop-down list.

4.4. Blocking access through the cloud

The option Block access through the cloud blocks the possibility of connecting the application to

the system via the cloud. Then it will be possible to use the application only in the local connection

mode.

af://n11376
af://n11379

A. Android application behavior

After blocking access by the cloud and sending the configuration to the device, the connection mode

with CLU for this interface will be set to local connection (otherwise, the connection mode via the cloud

is set by default).

af://n11382

When changing the connection mode to connection via the cloud, connection with CLU will be

impossible. A message will be displayed that there is no connection to the system.

B. IOS application behavior

After blocking access by the cloud and sending the configuration to the device, it will not be possible to

select the Use cloud option in this interface in the application.

af://n11387

5. Sending the interface to the device

It is possible to send it to a mobile device in 2 ways:

5.1. Sending myGrenton interface to your phone using a QR

code or manually

To send the interface to the phone, click the Send the myGrenton interface to your phone icon

in the toolbar:

The window displayed allows you to send the interface by scanning the QR code or by providing

interface parameters:

af://n11391
af://n11393

Note! The computer with the Object Manager application and the mobile device with the

myGrenton application must be connected to the same LAN. The dialog window must remain open

until the interface transfer is completed.

On the phone, select the option to scan the QR code or manual entry. If data is provided manually, the

data displayed in the Object Manager window must be completed.

In the application for Android devices, after providing the correct data, select the option Load

interface :

In the application for iOS devices, select the Download option:

After correctly uploading the application will automatically launch the loaded interface.

5.2. Sharing myGrenton interface via the cloud

After clicking the icon Share myGrenton interface in the cloud the window for sharing the

interface to the Grenton cloud will appear:

It is possible to set the expiration date of the link with the interface. After clicking Get link a link to

the page with the generated interface appears

af://n11406

If the user has made changes to the interface, it is possible to update the shared interface:

After entering the shared link, a page will appear with two options for adding a new interface:

1. By opening the generated link in the browser of the Android phone (the myGrenton application will

automatically open and add a new interface to it) or by entering the link in the myGrenton

application on the iOS phone.

2. By scanning the created QR code in the myGrenton application.

Note! Sending an interface that contains widgets not supported in a given version of the

application will execute correctly, unsupported widgets will be skipped and will not be visible.

Functionality available with myGrenton application version 1.5.0 (Android) / 1.9.0 (iOS) or higher.

6. Application and interface settings

6.1. Application settings

A. Android

In the settings, we have the option of adding a new interface and changing the order of interfaces. The

Help button redirects you to the technical support page where you can find useful information about

the Grenton system. Licenses takes the user to a new page where all the licenses used are listed.

The Version field displays the version of the application being used.

af://n11424
af://n11425
af://n11426

B. iOS

In the settings, we can add an interface by scanning the QR code, manually entering data or entering

the URL address of the interface shared via the cloud. Here we can also see the current status of the

connection to the system and the version of the current myGrenton application. The License button

opens the page where the licenses are shown.

af://n11429

6.2. Interface Settings

A. Android

By clicking the interface you go to the interface settings. After entering the settings, you can customize

its appearance. It is possible to change the interface name, change the icon, choose the type of

connection, select the light or dark mode, display a card with a logo on the home page, set permissions

to display push notifications and also remove the interface.

af://n11432
af://n11433

B. iOS

By clicking the interface you go to the interface settings. There is an option to activate the interface. In

the settings we can also choose the type of connection, enable push notifications or remove the

interface.

af://n11436

Note! Required minimum CLU version for cloud support: 05.03.06

Note! To connect correctly via the cloud, a CLU connection is required. To do this, set the

parameter UseCloud == true and then send the configuration to CLU. Correct connection to

the cloud will be signaled by the cloudConnection == true parameter.

Note! If the CLU has connected to the cloud, the interface sent to the mobile application on the

Android device will use the remote connection by default. To switch to local communication, select

the local system connection type. For devices running on iOS, the UseCloud parameter is turned

off by default.

XIX. Grenton 2.0 Logic Distribution

Note! The functionality is available only for modules from the Grenton 2.0 series!

The Grenton version 2.0 system has the functionality of distributed logic and connections. Thanks to

this, it is possible for the modules to communicate directly with each other in order to trigger actions

between the inputs and the outputs without using the CLU central module. In the absence of

communication of the executive modules with the CLU unit or in the event of a CLU failure, the system

can still function in the set configuration. The functionality is available for modules that have the

Distributed Logic mode enabled. Ultimately, all Grenton 2.0 devices will support this functionality.

Distributed Logic setting is available for the following modules:

GRENTON DIGITAL IN 6+3, DIN, TF-Bus (INP-209-D-01)

GRENTON RELAY 4HP, DIN, TF-Bus (REL-204-D-01)

GRENTON RELAY 2HP, DIN, TF-Bus (REL-202-D-01)

GRENTON DIMMER MOSFET, DIN, TF-Bus (DIM-211-D-01)

GRENTON I/O MODULE 8/8, DIN, TF-Bus (INO-288-D-01)

GRENTON I/O MODULE 2/2, Flush, TF-Bus, 1-wire (INO-222-T-01)

GRENTON ROLLER SHUTTER, DIN, TF-Bus (RSH-201-D-01)

GRENTON ROLLER SHUTTER x3, DIN, TF-Bus (RSH-203-D-01)

GRENTON ROLLER SHUTTER, Flush, TF-Bus (RSH-201-T-01)

GRENTON LED RGBW, Flush, TF-Bus (RGB-042-T-16)

GRENTON TOUCH PANEL 8B, TF-Bus (TPA-208-T-0X)

GRENTON TOUCH PANEL 4B, TF-Bus (TPA-204-T-0X)

GRENTON SMART PANEL 4B, OLED, TF-Bus (SPS-204-T-01)

1. Configuration of the Distributed Logic mode

Note! The modules on the first connection to the bus have Logic Distributed Mode enabled - value

1 of the DistributedLogicGroup (Default Mode) feature - the inputs can control the outputs,

as described below. After performing CLU Discovery and sending the configuration, the mode

turns off.

Note! The Smart Panel module on the first connection to the bus have Logic Distributed Mode

enabled - value 1 of the DistributedLogicGroup_1 - DistributedLogicGroup_4 (Default

Mode) feature - assigned to four physical buttons - the inputs can control the outputs, as

described below. After performing CLU Discovery and sending the configuration, the mode turns

off.

A. Mode configuration for IN / OUT modules

af://n11451
af://n11484
af://n11489

The configuration of Distributed Logic is the same as for any other system functionality through the OM

application, and is defined for each IN / OUT object of a given module. The DistributedLogicGroup

feature is used for this. The default value of DistributedLogicGroup is 0, which means that the

mode is off.

If the connection of modules with CLU is lost and an event is detected for an input object (IN object of a

given module), a message is sent to each output object (OUT object of a given module) that has the

same value of the DistributedLogicGroup feature. As a result of receiving a message, the

appropriate action assigned to the received event is triggered on the output object.

B. Mode configuration for Smart Panel module

af://n11493

For Smart Panel module, the binding on the input takes place in the PANEL_PAGEx object. Before that,

PANEL_PAGEx objects must be linked with the appropriate PANEL_BUTTONx objects by setting the

appropriate values in the Object_x_Id field. If there is no connection to the CLU, in Distributed Logic

mode all 16 buttons can work with the change of pages using gestures.

Note! Distributed Logic is only possible in the Buttons mode of the PANEL_PAGEx object.

1.1. Operation of Distributed Logic between DIN and output

objects

Note! Events and triggered actions are set statically and cannot be changed.

Available actions while running in the Distributed Logic Mode:

A. DIN and DOUT objects

Switching on the DIN input object (SwitchOn) -> Switching on the given DOUT output.

Switching off the DIN input object (SwitchOff) -> Switching off the given DOUT output.

Short change of state of an input object DIN (Click) -> Change of state to the opposite of the given

DOUT output.

B. DIN and DIMM objects

Switching on the DIN input object (SwitchOn) -> Switching on the given DIMM output.

Switching off the DIN input object (SwitchOff) -> Switching off the given DIMM output.

Short change of state of an input object DIN (Click) -> Change of state to the opposite of the given

DIMM output.

af://n11498
af://n11502
af://n11509

C. DIN and LEDRGBW objects

Switching on the DIN input object (SwitchOn) -> Switching on the given LEDRGBW channel.

Switching off the DIN input object (SwitchOff) -> Switching off the given LEDRGBW channel.

Short change of state of an input object DIN (Click) -> Change of state to the opposite of the given

RGBW LED channel.

D. DIN and ROLLER_SHUTTER objects

Switching on the DIN input object (SwitchOn) -> Switching on the UP or DOWN ROLLER_SHUTTER

output, depending on the previous direction.

Switching off the DIN input object (SwitchOff) -> Switching off the given connected output (UP or

DOWN).

Short change of state of an input object DIN (Click) -> Change of state to opposite

ROLLER_SHUTTER:

if the relays (UP / DOWN) are turned off - switching on the UP or DOWN relay, depending on

the previous direction,

if the UP or DOWN relay is on - the relay is turned off.

Note! Switching the UP or DOWN relay means switching the relay on without switching off after

the MaxTime time has elapsed. The relays should be turned off with a given Roller Shutter control

input in the Distributed Logic mode.

1.2. Operation of Distributed Logic between BUTTON and

output objects

Note! Events and triggered actions are set statically and cannot be changed.

Available actions while running in the Distributed Logic mode:

A. BUTTON and DOUT objects

Press the button (SwitchOn) -> Switching on the given DOUT output.

Release the button (SwitchOff) -> Switching off the given DOUT output.

Short button press (Click) -> Change of state to the opposite of the given DOUT output.

B. BUTTON and DIMM objects

Press the button (SwitchOn) -> Switching on the given DIMM output.

Release the button (SwitchOff) -> Switching off the given DIMM output.

Short button press (Click) -> Change of state to the opposite of the given DIMM output.

C. BUTTON and LEDRGBW objects

Press the button (SwitchOn)-> Switching on the given LEDRGBW channel.

Release the button (SwitchOff)-> Switching off the given LEDRGBW channel.

Short button press (Click) -> Change of state to the opposite of the given RGBW LED channel.

af://n11518
af://n11526
af://n11541
af://n11545
af://n11553
af://n11561

D. BUTTON and ROLLER_SHUTTER objects

Press the button (SwitchOn) -> Switching on the UP or DOWN ROLLER_SHUTTER output,

depending on the previous direction.

Release the button (SwitchOff) -> Switching off the given connected output (UP or DOWN).

Short button press (Click) -> Change of state to opposite ROLLER_SHUTTER:

if the relays (UP / DOWN) are turned off - switching on the UP or DOWN relay, depending on

the previous direction,

if the UP or DOWN relay is on - the relay is turned off.

Note! Switching the relay UP or DOWN means switching on the relay without switching off after

the MaxTime time has elapsed. The relays should be turned off with a given control input of the

ROLLER_SHUTTER object in the Distributed Logic mode.

1.3. Operation of Distributed Logic between PANEL_PAGE with

PANEL_BUTTON and output objects

Note! Events and triggered actions are set statically and cannot be changed.

Available actions while running in the Distributed Logic mode:

A. PANEL_PAGE with PANEL_BUTTON object set and DOUT objects

Press the button (SwitchOn) -> Switching on the given DOUT output.

Release the button (SwitchOff) -> Switching off the given DOUT output.

Short button press (Click) -> Change of state to the opposite of the given DOUT output.

B. PANEL_PAGE with PANEL_BUTTON object set and DIMM objects

Press the button (SwitchOn) -> Switching on the given DIMM output.

Release the button (SwitchOff) -> Switching off the given DIMM output.

Short button press (Click) -> Change of state to the opposite of the given DIMM output.

C. PANEL_PAGE with PANEL_BUTTON object set and LEDRGBW objects

Press the button (SwitchOn)-> Switching on the given LEDRGBW channel.

Release the button (SwitchOff)-> Switching off the given LEDRGBW channel.

Short button press (Click) -> Change of state to the opposite of the given RGBW LED channel.

D. PANEL_PAGE with PANEL_BUTTON object set and ROLLER_SHUTTER

objects

Press the button (SwitchOn) -> Switching on the UP or DOWN ROLLER_SHUTTER output,

depending on the previous direction.

Release the button (SwitchOff) -> Switching off the given connected output (UP or DOWN).

Short button press (Click) -> Change of state to opposite ROLLER_SHUTTER:

if the relays (UP / DOWN) are turned off - switching on the UP or DOWN relay, depending on

the previous direction,

if the UP or DOWN relay is on - the relay is turned off.

af://n11569
af://n11584
af://n11588
af://n11596
af://n11604
af://n11612

Note! Switching the relay UP or DOWN means switching on the relay without switching off after

the MaxTime time has elapsed. The relays should be turned off with a given control input of the

ROLLER_SHUTTER object in the Distributed Logic mode.

2. Default Mode

If the value of the DistributedLogicGroup feature is set to 1 for a given object, it works in the

Default Mode. This is a special operating mode set by default for each object:

Note! The events and triggered actions are statically set and cannot be changed.

2.1. Default Mode for input modules and output modules

input module (DIGITAL IN 6+3 DIN) - controls all output modules (RELAY 4HP DIN, RELAY 2HP DIN,

DIMMER MOSFET DIN, ROLLER SHUTTER DIN, ROLLER SHUTTER DIN) in TFBUS network, which are

also in Default Mode, for example:

DIGITAL IN1 --> RELAY 4HP OUT1 | RELAY 2HP OUT1 | DIMMER MOSFET DIMM1 |

ROLLER_SHUTTER1.

DIGITAL IN2 --> RELAY 4HP OUT2 | RELAY 2HP OUT2 | ROLLER_SHUTTER2.

DIGITAL IN3 --> RELAY 4HP OUT3 | ROLLER_SHUTTER3.

DIGITAL IN4 --> RELAY 4HP OUT4.

Touch Panel module (TOUCH PANEL 4B, TOUCH PANEL 8B) - controls all output modules (RELAY

4HP DIN, RELAY 2HP DIN, DIMMER MOSFET DIN, ROLLER SHUTTER DIN) in TFBUS network, which

are also in Default Mode, for example:

TOUCH PANEL BUTTON1 --> RELAY 4HP OUT1 | RELAY 2HP OUT1 | DIMMER MOSFET DIMM1 |

ROLLER_SHUTTER1.

TOUCH PANEL BUTTON2 --> RELAY 4HP OUT2 | RELAY 2HP OUT2 | ROLLER_SHUTTER2.

TOUCH PANEL BUTTON3 --> RELAY 4HP OUT3 | ROLLER_SHUTTER3.

TOUCH PANEL BUTTON4 --> RELAY 4HP OUT4.

Smart Panel module - controls all output modules (RELAY 4HP DIN, RELAY 2HP DIN, DIMMER

MOSFET, ROLLER SHUTTER DIN) in TFBUS network, which are also in Default Mode, for example:

SMART PANEL PANEL_PAGE1 feature DistributedLogicGroup_1 --> RELAY 4HP OUT1 | RELAY

2HP OUT1 | DIMMER MOSFET DIMM1 | ROLLER_SHUTTER1.

SMART PANEL PANEL_PAGE1 feature DistributedLogicGroup_2 --> RELAY 4HP OUT2 | RELAY

2HP OUT2 | ROLLER_SHUTTER2.

SMART PANEL PANEL_PAGE1 feature DistributedLogicGroup_3 --> RELAY 4HP OUT3 |

ROLLER_SHUTTER3.

SMART PANEL PANEL_PAGE1 feature DistributedLogicGroup_4 --> RELAY 4HP OUT4.

Note! Switching the relay UP or DOWN means switching on the relay without switching off after

the MaxTime time has elapsed. The relays should be turned off with a given control input of the

ROLLER_SHUTTER object in the Distributed Logic mode.

Note!

For a Smart Panel module running in the Distributed Logic Default Mode, the behavior described

above is identical for any PANEL_PAGE object (PANEL_PAGE1 - PANEL_PAGE4).

af://n11628
af://n11632

1. Depending on the type of router used, its interface may differ from the general port configuration instruction. ↩

2. This is the default port for the camera stream rtsp. ↩

3. Its IP address can be found in the list of currently connected devices in the router's interface. ↩

4. Depending on what type of device is in use, its configuration may differ from the one provided in the manual. ↩

5. In addition to the connection settings in the same section, you can check the box that determines the use of the hands-free mode after receiving

a call ↩

6. Where X and Y are the CLU names. ↩

7. Within the meaning of the instructions, the word consists of two bytes. ↩

2.2. Default Mode for modules with their own inputs / outputs

module with inputs and outputs (I/O MODULE DIN 8, I/O MODULE FM, ROLLER SHUTTER FM) -

controls its own channels with the appropriate number (IN1-> OUT1, IN2-> OUT2, etc.) for

example:

I/O MODULE FM IN1 -> I/O MODULE FM OUT1 | ROLLER SHUTTER.

I/O MODULE FM IN2 -> I/O MODULE FM OUT2.

ROLLER SHUTTER FM IN1 --> ROLLER_SHUTTER1.

LED RGBW FM module - controls its own channels (Red, Green):

LED RGBW FM IN1 --> LED RGBW FM R-channel.

LED RGBW FM IN2 --> LED RGBW FM G-channel.

3. Restoring communication between the CLU and the
module

When communication between the CLU and modules is restored, the value of the Value property of the

given objects is updated to the actual value of the I / O (changed to the value changed during Logic

Distributed Mode operation) and the modules perform actions in accordance with the CLU's programmed

logic.

af://n11672
af://n11692

	User Manual
	Table of Contents
	Important information
	I. System structure
	II. Foundation - Grenton Logical Interface
	1. Introduction
	2. Features
	2.1. Built-in features
	2.2. User features

	3. Methods
	4. Events
	5. Features and methods addresses

	III. Project preparation
	1. Electrical system preparation
	A. Electrical system topology
	B. Bus
	C. Useful tips

	2. System architecture selection
	A. Basic configuration - centralized system with one CLU
	B. Advanced configuration - tablet-controlled distributed system with many CLU
	C. Integrating several buildings into one system

	3. Modules power supply

	IV. Components installation
	1. Modules installation in the switching action
	2. Flush-mounted wire modules installation
	3. Z-Wave flush-mounted modules installation

	V. Object Manager
	1. OM installation
	A. Windows
	B. macOS
	C. Linux

	2. OM structure
	2.1. Object filtering
	2.2. Renaming an object

	3. Project files
	3.1. Saved projects catalogue
	3.2. Project backup

	4. Basic elements
	4.1. Objects configurator
	4.2. Script builder
	4.3. Connections diagram
	4.4. Visual Builder
	4.5. myGrenton
	4.6. Bin

	VI. Basic system configuration
	1. Connecting OM to CLU
	2. IP adressess
	3. Creating new project
	4. CLU Discovery function
	4.1. Adding modules to the project
	4.2. Replacing / Reassigning modules during Discovery process

	5. CLU status
	5.1. Module diodes
	5.2. CLU module icon in OM

	6. Connecting Z-Wave modules
	6.1. Adding Z-Wave modules
	6.2. Removal of Z-Wave modules
	6.3. No communication with the Z-Wave module - a mechanism for counting communication failures and blocking device communication in the Z-Wave network
	6.4. Z-Wave network configuration tips
	6.5. Clearing information about nodes

	7. Sending the configuration to the CLU
	8. Initial values of features
	9. Creating basic connections
	10. Performing an update
	10.1. The process of updating the interface database
	10.2. The process of updating the firmware on the CLU
	A. Update from Grenton server
	B. Update with a .ZIP file

	10.3. The process of updating the firmware of the 2.0 series modules
	10.4. CLU / modules status in the firmware update window
	A. CLU status
	B. TF-Bus modules status

	10.5 Forcing the module update

	11. Diagnostic view
	11.1 Configuration of the diagnostic view

	12. Other operations on the system

	VII. Advanced configuration functions
	1. Containers
	2. Scripts
	2.1. Script creation in the graphic mode
	A. Action
	B. Condition
	C. Function block
	D. Operation on variables

	2.2. Script creation in the editor
	2.3. Script parameters
	2.4. Scripts invocation
	2.4. Find / Replace function
	2.5. Copying scripts

	3. Date and time

	VIII. Visual Builder – Smartphone control
	1. System control on the level of smartphone
	2. Interface structure
	3. Application for smartphone – GRENTON HOME MANAGER
	4. New interface creation
	4.1. Graphic skin selection
	4.2. Interface pages creation
	4.3. Components
	4.4. Panels
	4.5. Containers
	4.6. Adding components and connecting to the system objects
	4.7. Sending interface to mobile device

	5. Automatic interface creation - GUI generator
	5.1. Creating an interface with available resolution
	A. Simple configurator
	B. Advanced configurator

	5.2. Creating an interface with its own resolution
	5.3. Changing the orientation of the interface with its own resolution

	6. Video intercom configuration
	6.1. Connection and configuration of a video intercom
	A. Connection of a video intercom
	B. Camera configuration
	C. SIP configuration:

	6.2. Creation and configuration of the application interface
	A. Adding a door intercom to the application interface in the Object Manager
	B. Home Manager application configuration

	6.3. Making a call from the intercom

	7. IP cameras image operation
	A. Adding camera component
	B. Adding camera panel

	8. Remote access of the mobile application to the system
	8.1. System configuration
	8.2. Port routing setting on the local network router
	8.3. Configuration of the Home Manager mobile application
	8.4. Starting remote access

	IX. CLU Objects
	1. Timers
	A. Timers creation
	B. Configuration parameters of timer

	2. Calendar
	A. Calendar creation
	B. Calendar features
	C. Calendar rules
	D. Calendar rule creation through graphic interface
	E. Calendar rules creation in accordance with CRON format
	F. Configuration parameters of Calendar

	3. Schedule
	A. Schedule creation
	B. Setting values for the schedule
	C. Setting output value using schedule
	D. Configuration parameters of schedule

	4. PID controller
	A. PID controller creation
	B. Control using the controller
	C. Work modes
	D. PID Controller operational design
	E. PID Controller configuration parameters

	5. Thermostat
	A. Thermostat creation
	B. Formulating values for a thermostat
	C. Configuration parameters of the Thermostat object

	6. Push
	A. Push creation
	B. Configuration parameters of the Push object
	C. MyGrenton configuration
	D. How push notifications work

	7. Presence Sensor
	A. Presence sensor creation
	B. Operation mode of presence sensor
	C. Presence sensor configuration parameters

	8. Sunrise and Sunset Calendar
	A. Create a calendar
	B. Calendar configuration parameters

	9. Event Scheduler
	A. Create a event scheduler
	B. Event scheduler rules
	C. Event scheduler configuration parameters

	X. Media measurement
	1. Virtual media measurement
	1.1. Launching media measurement on the Object Manager page
	A. Creating a configuration
	B. Read media measurement in the Object Manager
	C. Configure the media measurement for the Home Manager application interface

	1.2. Using media measurement on the Home Manager application side
	A. Taking measurements
	B. Media panel view options
	C. Synchronization and downloading of measurements

	2. Real media measurement
	2.1. Real media measurement settings in Object Manager

	XI. CLU service functions
	1. Restoring factory settings CLU - Hard Reset
	2. System diagnostics - Save the diagnostic package

	XII. SMART PANEL
	1. Smart Panel equipment
	2. Connection of the Smart Panel to the CLU
	3. Information to help you create a configuration
	4. Configuration of the Smart Panel module in the version v3
	4.1. Configuration parameters
	A. Panel
	B. Buttons
	C. Temperature and lighting sensors

	4.2 Creating button and display configurations
	4.3 Creating a gesture sensor configuration
	4.4 Configuration of the proximity sensor
	4.5 Creating a multi-panel configuration of the touch panel

	5. Configuration of the Smart Panel v4
	5.1. Configuration parameters
	A. Panel
	B. Buttons
	C. Pages configuration (Panel_Page)
	D. Temperature and lighting sensors

	5.2. Creating a gesture sensor configuration
	5.3. Configuration of the proximity sensor
	5.4. Panel object - new functionality
	5.5. Panel object - page management mechanism
	5.6. Backward compatibility
	5.7. Creating a configuration using the Buttons page object
	5.8. Creating a configuration using the FreeDraw site object
	A. General rules for creating configurations
	B. Set up the site as a clock

	5.9. Creating a configuration using the Thermostats page object
	A. Creating a configuration with a local thermostat
	B. Creating a configuration with a remote thermostat
	C. Predefined button behavior

	5.10. Connecting objects to larger buttons

	6. Configuration of the Smart Panel v6
	6.1. Configuration parameters
	6.2. New functionality
	A. The mechanism of informing about incorrect configuration / entering to the Distributed Logic mode
	B. Distributed Logic mode

	6.3. Changing the UI and the mechanism of operation of Thermostats pages
	A. Thermostat UI change
	B. New features on the Thermostats page
	C. Predefined button behavior

	XIII. GATE ALARM Module
	1. General information
	2. Module configuration
	3. Integration with the Satel alarm control panel
	3.1. General information
	3.2. Configuration for the Satel system
	3.3. Virtual Objects
	A. Satel
	B. Zone
	C. Output
	D. Input

	4. Integration with the Jablotron control panel
	4.1. General information
	4.2. Configuration for the Jablotron system
	4.3. Virtual objects
	A. Jablotron
	B. Section / zone
	C. Output
	D. Input / Device

	5. Virtual object - Timer
	6. Restoring factory settings - Hard Reset
	7. Configuration parameters
	A. GATE
	B. Satel
	C. Jablotron
	D. Timer

	XIV. GATE MODBUS module
	1. General information
	2. Module configuration
	2.1. Time setting via NTP server
	2.2. Modbus virtual object configuration
	2.3. ModbusValue virtual object configuration

	3. Parameters of registers
	3.1. Virtual object Modbus
	A. 16-bit registers
	B. Fields in 16-bit registers
	C. 32-bit integer values of registers
	D. 32-bit floating point values of registers
	E. Discrete inputs / outputs

	3.2. Virtual object ModbusValue
	A. 16-bit integer values of registers
	B. Fields in 16-bit registers
	C. 32-bit integer values of registers
	D. Fields in 32-bit registers
	E. 32-bit floating point values of registers
	F. 64-bit integer values of registers
	G. Fields in 64-bit registers
	H. 64-bit floating point values of registers
	J. Discrete inputs / outputs

	4. Restoring factory settings - Hard Reset
	5. Configuration parameters
	A. GATE
	B. Object Modbus
	C. Object ModbusValue

	XV. GATE HTTP Module
	1. General information
	2. Module configuration
	2.1. Virtual objects
	2.1.1. HTTP Request
	2.1.2. Downloading certain values from the received response (XML, JSON)
	2.2.1. HttpListener
	2.2.2. Preparation of the response sent to the server
	2.2.3. Reading key values from the querystringparams parameter
	2.3.1. Timer

	3. The ability to connect to the Gate using TELNET
	4. Comprehensive integration with external systems using the GATE Http device
	4.1. System
	4.2. Output control
	4.3. Status download
	4.4. Event order
	4.5. Event synchronization
	4.6. Feedback confirmation
	4.7. Timeout
	4.8. A lot of objects
	4.9. Status for the complex system
	4.10. Push Notifications

	5. Restoring factory settings - Hard Reset
	6. Configuration parameters
	A. GATE
	B. HttpRequest Object
	C. HttpListener Object
	D. Timer

	XVI. DALI Controller Module
	1. General information
	2. Module configuration
	A. Ballast addressing
	B. Adding ballasts to the project
	C. Ballast control
	D. RampTime

	3. Objects
	A. DALI_MASTER
	B. DALI_GEAR
	C. DALI_GEAR_DT8
	D. AnalogIN

	XVII. Z-Wave modules
	1. Fibaro UBS
	1.1. General information
	1.2. Objects
	A. ZWAVE_DIN
	B. ZWAVE_1W_SENSOR
	C. ZWAVE_CONFIG

	2. NEO Coolcam Motion Sensor (PIR)
	2.1. General information
	2.2. Objects
	A. BINARY_SENSOR
	B. ANALOG_SENSOR
	C. ZWAVE_BATTERY
	D. ZWAVE_WAKEUP
	E. ZWAVE_CONFIG

	3. NEO Coolcam Door / Window Sensor
	3.1. General information
	3.2. Objects
	A. BINARY_SENSOR
	B. ZWAVE_BATTERY
	C. ZWAVE_WAKEUP
	D. ZWAVE_CONFIG

	4. INFIBITY Motion Sensor (PIR) [NEO Coolcam]
	4.1. General information
	4.2. Objects
	A. BINARY_SENSOR
	B. ANALOG_SENSOR
	C. ZWAVE_BATTERY
	D. ZWAVE_WAKEUP
	E. ZWAVE_CONFIG

	5. INFIBITY Door/Window Sensor [NEO Coolcam]
	5.1. General information
	5.2. Objects
	A. BINARY_SENSOR
	B. ZWAVE_BATTERY
	C. ZWAVE_WAKEUP
	D. ZWAVE_CONFIG

	6. INFIBITY Water Sensor [NEO Coolcam]
	6.1. General information
	6.2. Objects
	A. BINARY_SENSOR
	B. ZWAVE_BATTERY
	C. ZWAVE_WAKEUP
	D. ZWAVE_CONFIG

	7. Heiman Smart Smoke Sensor
	7.1. General information
	7.2. Objects
	A. BINARY_SENSOR
	B. ZWAVE_BATTERY
	C. ZWAVE_WAKEUP
	D. ZWAVE_CONFIG

	8. INFIBITY Siren Alarm [NEO Coolcam]
	8.1. General information
	8.2. Objects
	A. ZWAVE_DOUT
	B. ZWAVE_BATTERY
	C. ZWAVE_WAKEUP
	D. ZWAVE_CONFIG

	9. Danfoss Living Connect
	9.1. General information
	9.2. Objects
	A. ZWAVE_THERMOSTAT
	B. ZWAVE_BATTERY
	D. ZWAVE_CONFIG

	10. POPP Z-Weather
	10.1. General information
	10.2. Objects
	A. ZWAVE_WEATHER
	B. ZWAVE_BATTERY
	C. ZWAVE_WAKEUP
	D. ZWAVE_CONFIG

	11. FAKRO AMZ Solar
	11.1. General information
	11.2. Objects
	ZWAVE_FAKRO
	ZWAVE_CONFIG

	12. FAKRO ARF
	12.1. General information
	12.2. Objects
	A. ZWAVE_FAKRO
	B. ZWAVE_CONFIG

	13. FAKRO FTP_V
	13.1. General information
	13.2. Objects
	A. ZWAVE_FAKRO
	B. ZWAVE_CONFIG

	14. Fibaro RGBW
	14.1. General information
	14.2. Objects
	A. ZWAVE_RGBW_LED
	B. ZWAVE_CONFIG

	15. Remotec ZXT-120
	15.1. General information
	15.2. Description of device configuration
	A. The way of teaching IR codes
	B. The way of sending IR codes

	15.3. Objects
	A. ZWAVE_IR
	B. ZWAVE_BATTERY
	C. ZWAVE_WAKEUP
	D. ZWAVE_CONFIG

	16. Remotec ZXT-310
	16.1. General information
	16.2. Device configuration
	A. The way of teaching IR codes
	B. The method of sending IR codes
	C. Endpoints configuration

	16.3. Objects
	A. ZWAVE_IR
	B. ZWAVE_IR_EP
	C. ZWAVE_WAKEUP
	D. ZWAVE_CONFIG

	17. Aeotec Nano Switch
	17.1. General information
	17.2. Objects
	A. ZWAVE_DOUT
	B. ZWAVE_CONFIG

	18. Aeotec Dual Nano Switch
	18.1. General information
	18.2. Objects
	A. ZWAVE_DOUT
	B. ZWAVE_CONFIG

	19. Aeotec Nano Dimmer
	19.1. General information
	19.2. Objects
	A. ZWAVE_DIMMER
	B. ZWAVE_DIN
	C. ZWAVE_CONFIG

	20. Aeotec Nano Shutter
	20.1. General information
	20.2. Objects
	A. ZWAVE_ROLLER_SHUTTER
	B. ZWAVE_CONFIG

	21. Aeotec Nano Shutter (V2)
	21.1. General information
	21.2. Objects
	A. ZWAVE_ROLLER_SHUTTER
	B. ZWAVE_CONFIG

	XVIII. MyGrenton mobile application
	1. Installation and first launch of the myGrenton application
	1.1. Installation
	A. Android
	B. iOS

	1.2. First start-up, demonstration interface

	2. Creating the interface
	2.1. Adding a page to the interface
	2.2. Deleting a page from the interface
	2.3. Copying the interface

	3. Widgets
	3.1. Header (HEADER)
	3.2. Value (VALUE)
	3.3. Value v2 (VALUE_V2)
	3.4. Value Double (VALUE_DOUBLE)
	3.5. On/Off (ON_OFF)
	3.6. On/Off Double (ON_OFF_DOUBLE)
	3.7. Scene (SCENE)
	3.8. Scene Double (SCENE_DOUBLE)
	3.9. Dimmer (DIMMER)
	3.10. Dimmer v2 (DIMMER_V2)
	3.11. LED Lighting (LED)
	3.12. Thermostat (THERMOSTAT)
	A. Schedule configuration in the application

	3.13. Roller Shutter (ROLLER_SHUTTER)
	3.14. Roller Shutter v2 (ROLLER_SHUTTER_V2)
	3.15. Roller Shutter v3 (ROLLER_SHUTTER_V3)
	3.16. Camera (CAMERA)
	A. Camera configuration
	B. Camera widget in the app

	3.17. Text (TEXT)
	3.18. Scheduler (SCHEDULER)
	3.19. Event Scheduler (EVENT_SCHEDULER)
	A. Event scheduler configuration in the application

	3.20. Multisensor (MULTISENSOR)
	3.21. TV Remote Control (TV_REMOTE_CONTROL)
	3.22. Audio Remote Control (AUDIO_REMOTE_CONTROL)
	3.22. Contact Sensor (CONTACT_SENSOR)
	3.23. Contact Sensor Double (CONTACT_SENSOR_DOUBLE)
	3.24. Slider (SLIDER)
	3.25. Personalization of the widget
	A. Change the name
	B. Change icon / background picture

	3.26. Widget removal
	3.27. Copying widgets

	4. Personalization of the interface
	4.1. Change the name of the interface
	4.2. Change the interface icon
	4.3. Change the color of the interface
	4.4. Blocking access through the cloud
	A. Android application behavior
	B. IOS application behavior

	5. Sending the interface to the device
	5.1. Sending myGrenton interface to your phone using a QR code or manually
	5.2. Sharing myGrenton interface via the cloud

	6. Application and interface settings
	6.1. Application settings
	A. Android
	B. iOS

	6.2. Interface Settings
	A. Android
	B. iOS

	XIX. Grenton 2.0 Logic Distribution
	1. Configuration of the Distributed Logic mode
	A. Mode configuration for IN / OUT modules
	B. Mode configuration for Smart Panel module
	1.1. Operation of Distributed Logic between DIN and output objects
	A. DIN and DOUT objects
	B. DIN and DIMM objects
	C. DIN and LEDRGBW objects
	D. DIN and ROLLER_SHUTTER objects
	1.2. Operation of Distributed Logic between BUTTON and output objects
	A. BUTTON and DOUT objects
	B. BUTTON and DIMM objects
	C. BUTTON and LEDRGBW objects
	D. BUTTON and ROLLER_SHUTTER objects
	1.3. Operation of Distributed Logic between PANEL_PAGE with PANEL_BUTTON and output objects
	A. PANEL_PAGE with PANEL_BUTTON object set and DOUT objects
	B. PANEL_PAGE with PANEL_BUTTON object set and DIMM objects
	C. PANEL_PAGE with PANEL_BUTTON object set and LEDRGBW objects
	D. PANEL_PAGE with PANEL_BUTTON object set and ROLLER_SHUTTER objects

	2. Default Mode
	2.1. Default Mode for input modules and output modules
	2.2. Default Mode for modules with their own inputs / outputs

	3. Restoring communication between the CLU and the module

